| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdh8a.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdh8a.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
mapdh8a.v |
|- V = ( Base ` U ) |
| 4 |
|
mapdh8a.s |
|- .- = ( -g ` U ) |
| 5 |
|
mapdh8a.o |
|- .0. = ( 0g ` U ) |
| 6 |
|
mapdh8a.n |
|- N = ( LSpan ` U ) |
| 7 |
|
mapdh8a.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 8 |
|
mapdh8a.d |
|- D = ( Base ` C ) |
| 9 |
|
mapdh8a.r |
|- R = ( -g ` C ) |
| 10 |
|
mapdh8a.q |
|- Q = ( 0g ` C ) |
| 11 |
|
mapdh8a.j |
|- J = ( LSpan ` C ) |
| 12 |
|
mapdh8a.m |
|- M = ( ( mapd ` K ) ` W ) |
| 13 |
|
mapdh8a.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
| 14 |
|
mapdh8a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 15 |
|
mapdh8d.f |
|- ( ph -> F e. D ) |
| 16 |
|
mapdh8d.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
| 17 |
|
mapdh8b.eg |
|- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
| 18 |
|
mapdh8d.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 19 |
|
mapdh8d.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 20 |
|
mapdh8d.xt |
|- ( ph -> T e. ( V \ { .0. } ) ) |
| 21 |
|
mapdh8d.yz |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { T } ) ) |
| 22 |
|
mapdh8d.w |
|- ( ph -> w e. ( V \ { .0. } ) ) |
| 23 |
|
mapdh8d.wt |
|- ( ph -> ( N ` { w } ) =/= ( N ` { T } ) ) |
| 24 |
|
mapdh8d.ut |
|- ( ph -> ( N ` { X } ) =/= ( N ` { T } ) ) |
| 25 |
|
mapdh8d.vw |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { w } ) ) |
| 26 |
|
mapdh8d.xn |
|- ( ph -> -. X e. ( N ` { Y , w } ) ) |
| 27 |
14
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( K e. HL /\ W e. H ) ) |
| 28 |
19
|
eldifad |
|- ( ph -> Y e. V ) |
| 29 |
1 2 14
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 30 |
18
|
eldifad |
|- ( ph -> X e. V ) |
| 31 |
22
|
eldifad |
|- ( ph -> w e. V ) |
| 32 |
3 6 29 30 28 31 26
|
lspindpi |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { w } ) ) ) |
| 33 |
32
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 34 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 28 33
|
mapdhcl |
|- ( ph -> ( I ` <. X , F , Y >. ) e. D ) |
| 35 |
17 34
|
eqeltrrd |
|- ( ph -> G e. D ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> G e. D ) |
| 37 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 19 35 33
|
mapdheq |
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) ) |
| 38 |
17 37
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) |
| 39 |
38
|
simpld |
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) |
| 41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 25 22 26
|
mapdh8a |
|- ( ph -> ( I ` <. Y , G , w >. ) = ( I ` <. X , F , w >. ) ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. Y , G , w >. ) = ( I ` <. X , F , w >. ) ) |
| 43 |
19
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> Y e. ( V \ { .0. } ) ) |
| 44 |
22
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> w e. ( V \ { .0. } ) ) |
| 45 |
23
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( N ` { w } ) =/= ( N ` { T } ) ) |
| 46 |
20
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> T e. ( V \ { .0. } ) ) |
| 47 |
25
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( N ` { Y } ) =/= ( N ` { w } ) ) |
| 48 |
|
simpr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> X e. ( N ` { Y , T } ) ) |
| 49 |
26
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> -. X e. ( N ` { Y , w } ) ) |
| 50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 27 36 40 42 43 44 45 46 47 48 49
|
mapdh8b |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. w , ( I ` <. X , F , w >. ) , T >. ) = ( I ` <. Y , G , T >. ) ) |
| 51 |
15
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> F e. D ) |
| 52 |
16
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
| 53 |
|
eqidd |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. X , F , w >. ) = ( I ` <. X , F , w >. ) ) |
| 54 |
18
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> X e. ( V \ { .0. } ) ) |
| 55 |
21
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( N ` { Y } ) =/= ( N ` { T } ) ) |
| 56 |
24
|
adantr |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( N ` { X } ) =/= ( N ` { T } ) ) |
| 57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 27 51 52 53 54 43 46 55 44 45 56 47 48 49
|
mapdh8c |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. w , ( I ` <. X , F , w >. ) , T >. ) = ( I ` <. X , F , T >. ) ) |
| 58 |
50 57
|
eqtr3d |
|- ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) ) |
| 59 |
14
|
adantr |
|- ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( K e. HL /\ W e. H ) ) |
| 60 |
15
|
adantr |
|- ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> F e. D ) |
| 61 |
16
|
adantr |
|- ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
| 62 |
17
|
adantr |
|- ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( I ` <. X , F , Y >. ) = G ) |
| 63 |
18
|
adantr |
|- ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> X e. ( V \ { .0. } ) ) |
| 64 |
19
|
adantr |
|- ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> Y e. ( V \ { .0. } ) ) |
| 65 |
21
|
adantr |
|- ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( N ` { Y } ) =/= ( N ` { T } ) ) |
| 66 |
20
|
adantr |
|- ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> T e. ( V \ { .0. } ) ) |
| 67 |
|
simpr |
|- ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> -. X e. ( N ` { Y , T } ) ) |
| 68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 59 60 61 62 63 64 65 66 67
|
mapdh8a |
|- ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) ) |
| 69 |
58 68
|
pm2.61dan |
|- ( ph -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) ) |