| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdh8a.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdh8a.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | mapdh8a.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | mapdh8a.s |  |-  .- = ( -g ` U ) | 
						
							| 5 |  | mapdh8a.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | mapdh8a.n |  |-  N = ( LSpan ` U ) | 
						
							| 7 |  | mapdh8a.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | mapdh8a.d |  |-  D = ( Base ` C ) | 
						
							| 9 |  | mapdh8a.r |  |-  R = ( -g ` C ) | 
						
							| 10 |  | mapdh8a.q |  |-  Q = ( 0g ` C ) | 
						
							| 11 |  | mapdh8a.j |  |-  J = ( LSpan ` C ) | 
						
							| 12 |  | mapdh8a.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 13 |  | mapdh8a.i |  |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) | 
						
							| 14 |  | mapdh8a.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 15 |  | mapdh8d.f |  |-  ( ph -> F e. D ) | 
						
							| 16 |  | mapdh8d.mn |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) | 
						
							| 17 |  | mapdh8b.eg |  |-  ( ph -> ( I ` <. X , F , Y >. ) = G ) | 
						
							| 18 |  | mapdh8d.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 19 |  | mapdh8d.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 20 |  | mapdh8d.xt |  |-  ( ph -> T e. ( V \ { .0. } ) ) | 
						
							| 21 |  | mapdh8d.yz |  |-  ( ph -> ( N ` { Y } ) =/= ( N ` { T } ) ) | 
						
							| 22 |  | mapdh8d.w |  |-  ( ph -> w e. ( V \ { .0. } ) ) | 
						
							| 23 |  | mapdh8d.wt |  |-  ( ph -> ( N ` { w } ) =/= ( N ` { T } ) ) | 
						
							| 24 |  | mapdh8d.ut |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { T } ) ) | 
						
							| 25 |  | mapdh8d.vw |  |-  ( ph -> ( N ` { Y } ) =/= ( N ` { w } ) ) | 
						
							| 26 |  | mapdh8d.xn |  |-  ( ph -> -. X e. ( N ` { Y , w } ) ) | 
						
							| 27 | 14 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 28 | 19 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 29 | 1 2 14 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 30 | 18 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 31 | 22 | eldifad |  |-  ( ph -> w e. V ) | 
						
							| 32 | 3 6 29 30 28 31 26 | lspindpi |  |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { w } ) ) ) | 
						
							| 33 | 32 | simpld |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 34 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 28 33 | mapdhcl |  |-  ( ph -> ( I ` <. X , F , Y >. ) e. D ) | 
						
							| 35 | 17 34 | eqeltrrd |  |-  ( ph -> G e. D ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> G e. D ) | 
						
							| 37 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 19 35 33 | mapdheq |  |-  ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) ) | 
						
							| 38 | 17 37 | mpbid |  |-  ( ph -> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) | 
						
							| 39 | 38 | simpld |  |-  ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) | 
						
							| 41 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 25 22 26 | mapdh8a |  |-  ( ph -> ( I ` <. Y , G , w >. ) = ( I ` <. X , F , w >. ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. Y , G , w >. ) = ( I ` <. X , F , w >. ) ) | 
						
							| 43 | 19 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> Y e. ( V \ { .0. } ) ) | 
						
							| 44 | 22 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> w e. ( V \ { .0. } ) ) | 
						
							| 45 | 23 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( N ` { w } ) =/= ( N ` { T } ) ) | 
						
							| 46 | 20 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> T e. ( V \ { .0. } ) ) | 
						
							| 47 | 25 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( N ` { Y } ) =/= ( N ` { w } ) ) | 
						
							| 48 |  | simpr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> X e. ( N ` { Y , T } ) ) | 
						
							| 49 | 26 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> -. X e. ( N ` { Y , w } ) ) | 
						
							| 50 | 1 2 3 4 5 6 7 8 9 10 11 12 13 27 36 40 42 43 44 45 46 47 48 49 | mapdh8b |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. w , ( I ` <. X , F , w >. ) , T >. ) = ( I ` <. Y , G , T >. ) ) | 
						
							| 51 | 15 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> F e. D ) | 
						
							| 52 | 16 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) | 
						
							| 53 |  | eqidd |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. X , F , w >. ) = ( I ` <. X , F , w >. ) ) | 
						
							| 54 | 18 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> X e. ( V \ { .0. } ) ) | 
						
							| 55 | 21 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( N ` { Y } ) =/= ( N ` { T } ) ) | 
						
							| 56 | 24 | adantr |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( N ` { X } ) =/= ( N ` { T } ) ) | 
						
							| 57 | 1 2 3 4 5 6 7 8 9 10 11 12 13 27 51 52 53 54 43 46 55 44 45 56 47 48 49 | mapdh8c |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. w , ( I ` <. X , F , w >. ) , T >. ) = ( I ` <. X , F , T >. ) ) | 
						
							| 58 | 50 57 | eqtr3d |  |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) ) | 
						
							| 59 | 14 | adantr |  |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 60 | 15 | adantr |  |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> F e. D ) | 
						
							| 61 | 16 | adantr |  |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) | 
						
							| 62 | 17 | adantr |  |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( I ` <. X , F , Y >. ) = G ) | 
						
							| 63 | 18 | adantr |  |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> X e. ( V \ { .0. } ) ) | 
						
							| 64 | 19 | adantr |  |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> Y e. ( V \ { .0. } ) ) | 
						
							| 65 | 21 | adantr |  |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( N ` { Y } ) =/= ( N ` { T } ) ) | 
						
							| 66 | 20 | adantr |  |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> T e. ( V \ { .0. } ) ) | 
						
							| 67 |  | simpr |  |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> -. X e. ( N ` { Y , T } ) ) | 
						
							| 68 | 1 2 3 4 5 6 7 8 9 10 11 12 13 59 60 61 62 63 64 65 66 67 | mapdh8a |  |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) ) | 
						
							| 69 | 58 68 | pm2.61dan |  |-  ( ph -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) ) |