Metamath Proof Explorer


Theorem mapdh8b

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 6-May-2015)

Ref Expression
Hypotheses mapdh8a.h
|- H = ( LHyp ` K )
mapdh8a.u
|- U = ( ( DVecH ` K ) ` W )
mapdh8a.v
|- V = ( Base ` U )
mapdh8a.s
|- .- = ( -g ` U )
mapdh8a.o
|- .0. = ( 0g ` U )
mapdh8a.n
|- N = ( LSpan ` U )
mapdh8a.c
|- C = ( ( LCDual ` K ) ` W )
mapdh8a.d
|- D = ( Base ` C )
mapdh8a.r
|- R = ( -g ` C )
mapdh8a.q
|- Q = ( 0g ` C )
mapdh8a.j
|- J = ( LSpan ` C )
mapdh8a.m
|- M = ( ( mapd ` K ) ` W )
mapdh8a.i
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
mapdh8a.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdh8b.f
|- ( ph -> G e. D )
mapdh8b.mn
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) )
mapdh8b.a
|- ( ph -> ( I ` <. Y , G , w >. ) = E )
mapdh8b.x
|- ( ph -> Y e. ( V \ { .0. } ) )
mapdh8b.y
|- ( ph -> w e. ( V \ { .0. } ) )
mapdh8b.yz
|- ( ph -> ( N ` { w } ) =/= ( N ` { T } ) )
mapdh8b.xt
|- ( ph -> T e. ( V \ { .0. } ) )
mapdh8b.vw
|- ( ph -> ( N ` { Y } ) =/= ( N ` { w } ) )
mapdh8b.e
|- ( ph -> X e. ( N ` { Y , T } ) )
mapdh8b.xn
|- ( ph -> -. X e. ( N ` { Y , w } ) )
Assertion mapdh8b
|- ( ph -> ( I ` <. w , E , T >. ) = ( I ` <. Y , G , T >. ) )

Proof

Step Hyp Ref Expression
1 mapdh8a.h
 |-  H = ( LHyp ` K )
2 mapdh8a.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdh8a.v
 |-  V = ( Base ` U )
4 mapdh8a.s
 |-  .- = ( -g ` U )
5 mapdh8a.o
 |-  .0. = ( 0g ` U )
6 mapdh8a.n
 |-  N = ( LSpan ` U )
7 mapdh8a.c
 |-  C = ( ( LCDual ` K ) ` W )
8 mapdh8a.d
 |-  D = ( Base ` C )
9 mapdh8a.r
 |-  R = ( -g ` C )
10 mapdh8a.q
 |-  Q = ( 0g ` C )
11 mapdh8a.j
 |-  J = ( LSpan ` C )
12 mapdh8a.m
 |-  M = ( ( mapd ` K ) ` W )
13 mapdh8a.i
 |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
14 mapdh8a.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
15 mapdh8b.f
 |-  ( ph -> G e. D )
16 mapdh8b.mn
 |-  ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) )
17 mapdh8b.a
 |-  ( ph -> ( I ` <. Y , G , w >. ) = E )
18 mapdh8b.x
 |-  ( ph -> Y e. ( V \ { .0. } ) )
19 mapdh8b.y
 |-  ( ph -> w e. ( V \ { .0. } ) )
20 mapdh8b.yz
 |-  ( ph -> ( N ` { w } ) =/= ( N ` { T } ) )
21 mapdh8b.xt
 |-  ( ph -> T e. ( V \ { .0. } ) )
22 mapdh8b.vw
 |-  ( ph -> ( N ` { Y } ) =/= ( N ` { w } ) )
23 mapdh8b.e
 |-  ( ph -> X e. ( N ` { Y , T } ) )
24 mapdh8b.xn
 |-  ( ph -> -. X e. ( N ` { Y , w } ) )
25 1 2 14 dvhlvec
 |-  ( ph -> U e. LVec )
26 18 eldifad
 |-  ( ph -> Y e. V )
27 19 eldifad
 |-  ( ph -> w e. V )
28 21 eldifad
 |-  ( ph -> T e. V )
29 3 6 25 26 27 28 23 24 lspindp5
 |-  ( ph -> -. T e. ( N ` { Y , w } ) )
30 prcom
 |-  { w , T } = { T , w }
31 30 fveq2i
 |-  ( N ` { w , T } ) = ( N ` { T , w } )
32 31 eleq2i
 |-  ( Y e. ( N ` { w , T } ) <-> Y e. ( N ` { T , w } ) )
33 25 adantr
 |-  ( ( ph /\ Y e. ( N ` { T , w } ) ) -> U e. LVec )
34 18 adantr
 |-  ( ( ph /\ Y e. ( N ` { T , w } ) ) -> Y e. ( V \ { .0. } ) )
35 28 adantr
 |-  ( ( ph /\ Y e. ( N ` { T , w } ) ) -> T e. V )
36 27 adantr
 |-  ( ( ph /\ Y e. ( N ` { T , w } ) ) -> w e. V )
37 22 adantr
 |-  ( ( ph /\ Y e. ( N ` { T , w } ) ) -> ( N ` { Y } ) =/= ( N ` { w } ) )
38 simpr
 |-  ( ( ph /\ Y e. ( N ` { T , w } ) ) -> Y e. ( N ` { T , w } ) )
39 3 5 6 33 34 35 36 37 38 lspexch
 |-  ( ( ph /\ Y e. ( N ` { T , w } ) ) -> T e. ( N ` { Y , w } ) )
40 39 ex
 |-  ( ph -> ( Y e. ( N ` { T , w } ) -> T e. ( N ` { Y , w } ) ) )
41 32 40 syl5bi
 |-  ( ph -> ( Y e. ( N ` { w , T } ) -> T e. ( N ` { Y , w } ) ) )
42 29 41 mtod
 |-  ( ph -> -. Y e. ( N ` { w , T } ) )
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 42 mapdh8a
 |-  ( ph -> ( I ` <. w , E , T >. ) = ( I ` <. Y , G , T >. ) )