Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh8a.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdh8a.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
mapdh8a.v |
|- V = ( Base ` U ) |
4 |
|
mapdh8a.s |
|- .- = ( -g ` U ) |
5 |
|
mapdh8a.o |
|- .0. = ( 0g ` U ) |
6 |
|
mapdh8a.n |
|- N = ( LSpan ` U ) |
7 |
|
mapdh8a.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
mapdh8a.d |
|- D = ( Base ` C ) |
9 |
|
mapdh8a.r |
|- R = ( -g ` C ) |
10 |
|
mapdh8a.q |
|- Q = ( 0g ` C ) |
11 |
|
mapdh8a.j |
|- J = ( LSpan ` C ) |
12 |
|
mapdh8a.m |
|- M = ( ( mapd ` K ) ` W ) |
13 |
|
mapdh8a.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
14 |
|
mapdh8a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
15 |
|
mapdh8b.f |
|- ( ph -> G e. D ) |
16 |
|
mapdh8b.mn |
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) |
17 |
|
mapdh8b.a |
|- ( ph -> ( I ` <. Y , G , w >. ) = E ) |
18 |
|
mapdh8b.x |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
19 |
|
mapdh8b.y |
|- ( ph -> w e. ( V \ { .0. } ) ) |
20 |
|
mapdh8b.yz |
|- ( ph -> ( N ` { w } ) =/= ( N ` { T } ) ) |
21 |
|
mapdh8b.xt |
|- ( ph -> T e. ( V \ { .0. } ) ) |
22 |
|
mapdh8b.vw |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { w } ) ) |
23 |
|
mapdh8b.e |
|- ( ph -> X e. ( N ` { Y , T } ) ) |
24 |
|
mapdh8b.xn |
|- ( ph -> -. X e. ( N ` { Y , w } ) ) |
25 |
1 2 14
|
dvhlvec |
|- ( ph -> U e. LVec ) |
26 |
18
|
eldifad |
|- ( ph -> Y e. V ) |
27 |
19
|
eldifad |
|- ( ph -> w e. V ) |
28 |
21
|
eldifad |
|- ( ph -> T e. V ) |
29 |
3 6 25 26 27 28 23 24
|
lspindp5 |
|- ( ph -> -. T e. ( N ` { Y , w } ) ) |
30 |
|
prcom |
|- { w , T } = { T , w } |
31 |
30
|
fveq2i |
|- ( N ` { w , T } ) = ( N ` { T , w } ) |
32 |
31
|
eleq2i |
|- ( Y e. ( N ` { w , T } ) <-> Y e. ( N ` { T , w } ) ) |
33 |
25
|
adantr |
|- ( ( ph /\ Y e. ( N ` { T , w } ) ) -> U e. LVec ) |
34 |
18
|
adantr |
|- ( ( ph /\ Y e. ( N ` { T , w } ) ) -> Y e. ( V \ { .0. } ) ) |
35 |
28
|
adantr |
|- ( ( ph /\ Y e. ( N ` { T , w } ) ) -> T e. V ) |
36 |
27
|
adantr |
|- ( ( ph /\ Y e. ( N ` { T , w } ) ) -> w e. V ) |
37 |
22
|
adantr |
|- ( ( ph /\ Y e. ( N ` { T , w } ) ) -> ( N ` { Y } ) =/= ( N ` { w } ) ) |
38 |
|
simpr |
|- ( ( ph /\ Y e. ( N ` { T , w } ) ) -> Y e. ( N ` { T , w } ) ) |
39 |
3 5 6 33 34 35 36 37 38
|
lspexch |
|- ( ( ph /\ Y e. ( N ` { T , w } ) ) -> T e. ( N ` { Y , w } ) ) |
40 |
39
|
ex |
|- ( ph -> ( Y e. ( N ` { T , w } ) -> T e. ( N ` { Y , w } ) ) ) |
41 |
32 40
|
syl5bi |
|- ( ph -> ( Y e. ( N ` { w , T } ) -> T e. ( N ` { Y , w } ) ) ) |
42 |
29 41
|
mtod |
|- ( ph -> -. Y e. ( N ` { w , T } ) ) |
43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 42
|
mapdh8a |
|- ( ph -> ( I ` <. w , E , T >. ) = ( I ` <. Y , G , T >. ) ) |