| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdh8a.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdh8a.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | mapdh8a.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | mapdh8a.s |  |-  .- = ( -g ` U ) | 
						
							| 5 |  | mapdh8a.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | mapdh8a.n |  |-  N = ( LSpan ` U ) | 
						
							| 7 |  | mapdh8a.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | mapdh8a.d |  |-  D = ( Base ` C ) | 
						
							| 9 |  | mapdh8a.r |  |-  R = ( -g ` C ) | 
						
							| 10 |  | mapdh8a.q |  |-  Q = ( 0g ` C ) | 
						
							| 11 |  | mapdh8a.j |  |-  J = ( LSpan ` C ) | 
						
							| 12 |  | mapdh8a.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 13 |  | mapdh8a.i |  |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) | 
						
							| 14 |  | mapdh8a.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 15 |  | mapdh8c.f |  |-  ( ph -> F e. D ) | 
						
							| 16 |  | mapdh8c.mn |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) | 
						
							| 17 |  | mapdh8c.a |  |-  ( ph -> ( I ` <. X , F , w >. ) = E ) | 
						
							| 18 |  | mapdh8c.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 19 |  | mapdh8c.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 20 |  | mapdh8c.xt |  |-  ( ph -> T e. ( V \ { .0. } ) ) | 
						
							| 21 |  | mapdh8c.yz |  |-  ( ph -> ( N ` { Y } ) =/= ( N ` { T } ) ) | 
						
							| 22 |  | mapdh8c.w |  |-  ( ph -> w e. ( V \ { .0. } ) ) | 
						
							| 23 |  | mapdh8c.wt |  |-  ( ph -> ( N ` { w } ) =/= ( N ` { T } ) ) | 
						
							| 24 |  | mapdh8c.ut |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { T } ) ) | 
						
							| 25 |  | mapdh8c.vw |  |-  ( ph -> ( N ` { Y } ) =/= ( N ` { w } ) ) | 
						
							| 26 |  | mapdh8c.e |  |-  ( ph -> X e. ( N ` { Y , T } ) ) | 
						
							| 27 |  | mapdh8c.xn |  |-  ( ph -> -. X e. ( N ` { Y , w } ) ) | 
						
							| 28 | 1 2 14 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 29 | 18 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 30 | 19 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 31 | 22 | eldifad |  |-  ( ph -> w e. V ) | 
						
							| 32 | 3 6 28 29 30 31 27 | lspindpi |  |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { w } ) ) ) | 
						
							| 33 | 32 | simprd |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { w } ) ) | 
						
							| 34 | 20 | eldifad |  |-  ( ph -> T e. V ) | 
						
							| 35 | 3 5 6 28 18 30 34 24 26 | lspexch |  |-  ( ph -> Y e. ( N ` { X , T } ) ) | 
						
							| 36 | 28 | adantr |  |-  ( ( ph /\ Y e. ( N ` { X , w } ) ) -> U e. LVec ) | 
						
							| 37 | 19 | adantr |  |-  ( ( ph /\ Y e. ( N ` { X , w } ) ) -> Y e. ( V \ { .0. } ) ) | 
						
							| 38 | 29 | adantr |  |-  ( ( ph /\ Y e. ( N ` { X , w } ) ) -> X e. V ) | 
						
							| 39 | 31 | adantr |  |-  ( ( ph /\ Y e. ( N ` { X , w } ) ) -> w e. V ) | 
						
							| 40 | 25 | adantr |  |-  ( ( ph /\ Y e. ( N ` { X , w } ) ) -> ( N ` { Y } ) =/= ( N ` { w } ) ) | 
						
							| 41 |  | simpr |  |-  ( ( ph /\ Y e. ( N ` { X , w } ) ) -> Y e. ( N ` { X , w } ) ) | 
						
							| 42 | 3 5 6 36 37 38 39 40 41 | lspexch |  |-  ( ( ph /\ Y e. ( N ` { X , w } ) ) -> X e. ( N ` { Y , w } ) ) | 
						
							| 43 | 27 42 | mtand |  |-  ( ph -> -. Y e. ( N ` { X , w } ) ) | 
						
							| 44 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 22 23 20 33 35 43 | mapdh8b |  |-  ( ph -> ( I ` <. w , E , T >. ) = ( I ` <. X , F , T >. ) ) |