Metamath Proof Explorer


Theorem mapdh8c

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 6-May-2015)

Ref Expression
Hypotheses mapdh8a.h H = LHyp K
mapdh8a.u U = DVecH K W
mapdh8a.v V = Base U
mapdh8a.s - ˙ = - U
mapdh8a.o 0 ˙ = 0 U
mapdh8a.n N = LSpan U
mapdh8a.c C = LCDual K W
mapdh8a.d D = Base C
mapdh8a.r R = - C
mapdh8a.q Q = 0 C
mapdh8a.j J = LSpan C
mapdh8a.m M = mapd K W
mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh8a.k φ K HL W H
mapdh8c.f φ F D
mapdh8c.mn φ M N X = J F
mapdh8c.a φ I X F w = E
mapdh8c.x φ X V 0 ˙
mapdh8c.y φ Y V 0 ˙
mapdh8c.xt φ T V 0 ˙
mapdh8c.yz φ N Y N T
mapdh8c.w φ w V 0 ˙
mapdh8c.wt φ N w N T
mapdh8c.ut φ N X N T
mapdh8c.vw φ N Y N w
mapdh8c.e φ X N Y T
mapdh8c.xn φ ¬ X N Y w
Assertion mapdh8c φ I w E T = I X F T

Proof

Step Hyp Ref Expression
1 mapdh8a.h H = LHyp K
2 mapdh8a.u U = DVecH K W
3 mapdh8a.v V = Base U
4 mapdh8a.s - ˙ = - U
5 mapdh8a.o 0 ˙ = 0 U
6 mapdh8a.n N = LSpan U
7 mapdh8a.c C = LCDual K W
8 mapdh8a.d D = Base C
9 mapdh8a.r R = - C
10 mapdh8a.q Q = 0 C
11 mapdh8a.j J = LSpan C
12 mapdh8a.m M = mapd K W
13 mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
14 mapdh8a.k φ K HL W H
15 mapdh8c.f φ F D
16 mapdh8c.mn φ M N X = J F
17 mapdh8c.a φ I X F w = E
18 mapdh8c.x φ X V 0 ˙
19 mapdh8c.y φ Y V 0 ˙
20 mapdh8c.xt φ T V 0 ˙
21 mapdh8c.yz φ N Y N T
22 mapdh8c.w φ w V 0 ˙
23 mapdh8c.wt φ N w N T
24 mapdh8c.ut φ N X N T
25 mapdh8c.vw φ N Y N w
26 mapdh8c.e φ X N Y T
27 mapdh8c.xn φ ¬ X N Y w
28 1 2 14 dvhlvec φ U LVec
29 18 eldifad φ X V
30 19 eldifad φ Y V
31 22 eldifad φ w V
32 3 6 28 29 30 31 27 lspindpi φ N X N Y N X N w
33 32 simprd φ N X N w
34 20 eldifad φ T V
35 3 5 6 28 18 30 34 24 26 lspexch φ Y N X T
36 28 adantr φ Y N X w U LVec
37 19 adantr φ Y N X w Y V 0 ˙
38 29 adantr φ Y N X w X V
39 31 adantr φ Y N X w w V
40 25 adantr φ Y N X w N Y N w
41 simpr φ Y N X w Y N X w
42 3 5 6 36 37 38 39 40 41 lspexch φ Y N X w X N Y w
43 27 42 mtand φ ¬ Y N X w
44 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 22 23 20 33 35 43 mapdh8b φ I w E T = I X F T