Metamath Proof Explorer


Theorem mapdh8c

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 6-May-2015)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8c.f φFD
mapdh8c.mn φMNX=JF
mapdh8c.a φIXFw=E
mapdh8c.x φXV0˙
mapdh8c.y φYV0˙
mapdh8c.xt φTV0˙
mapdh8c.yz φNYNT
mapdh8c.w φwV0˙
mapdh8c.wt φNwNT
mapdh8c.ut φNXNT
mapdh8c.vw φNYNw
mapdh8c.e φXNYT
mapdh8c.xn φ¬XNYw
Assertion mapdh8c φIwET=IXFT

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8c.f φFD
16 mapdh8c.mn φMNX=JF
17 mapdh8c.a φIXFw=E
18 mapdh8c.x φXV0˙
19 mapdh8c.y φYV0˙
20 mapdh8c.xt φTV0˙
21 mapdh8c.yz φNYNT
22 mapdh8c.w φwV0˙
23 mapdh8c.wt φNwNT
24 mapdh8c.ut φNXNT
25 mapdh8c.vw φNYNw
26 mapdh8c.e φXNYT
27 mapdh8c.xn φ¬XNYw
28 1 2 14 dvhlvec φULVec
29 18 eldifad φXV
30 19 eldifad φYV
31 22 eldifad φwV
32 3 6 28 29 30 31 27 lspindpi φNXNYNXNw
33 32 simprd φNXNw
34 20 eldifad φTV
35 3 5 6 28 18 30 34 24 26 lspexch φYNXT
36 28 adantr φYNXwULVec
37 19 adantr φYNXwYV0˙
38 29 adantr φYNXwXV
39 31 adantr φYNXwwV
40 25 adantr φYNXwNYNw
41 simpr φYNXwYNXw
42 3 5 6 36 37 38 39 40 41 lspexch φYNXwXNYw
43 27 42 mtand φ¬YNXw
44 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 22 23 20 33 35 43 mapdh8b φIwET=IXFT