Metamath Proof Explorer


Theorem mapdh8c

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 6-May-2015)

Ref Expression
Hypotheses mapdh8a.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdh8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.v 𝑉 = ( Base ‘ 𝑈 )
mapdh8a.s = ( -g𝑈 )
mapdh8a.o 0 = ( 0g𝑈 )
mapdh8a.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdh8a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.d 𝐷 = ( Base ‘ 𝐶 )
mapdh8a.r 𝑅 = ( -g𝐶 )
mapdh8a.q 𝑄 = ( 0g𝐶 )
mapdh8a.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdh8a.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdh8c.f ( 𝜑𝐹𝐷 )
mapdh8c.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdh8c.a ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) = 𝐸 )
mapdh8c.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8c.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8c.xt ( 𝜑𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8c.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
mapdh8c.w ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8c.wt ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
mapdh8c.ut ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
mapdh8c.vw ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
mapdh8c.e ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) )
mapdh8c.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) )
Assertion mapdh8c ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑤 , 𝐸 , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑇 ⟩ ) )

Proof

Step Hyp Ref Expression
1 mapdh8a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdh8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdh8a.v 𝑉 = ( Base ‘ 𝑈 )
4 mapdh8a.s = ( -g𝑈 )
5 mapdh8a.o 0 = ( 0g𝑈 )
6 mapdh8a.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdh8a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 mapdh8a.d 𝐷 = ( Base ‘ 𝐶 )
9 mapdh8a.r 𝑅 = ( -g𝐶 )
10 mapdh8a.q 𝑄 = ( 0g𝐶 )
11 mapdh8a.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdh8a.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
13 mapdh8a.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
14 mapdh8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 mapdh8c.f ( 𝜑𝐹𝐷 )
16 mapdh8c.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
17 mapdh8c.a ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) = 𝐸 )
18 mapdh8c.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
19 mapdh8c.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
20 mapdh8c.xt ( 𝜑𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
21 mapdh8c.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
22 mapdh8c.w ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
23 mapdh8c.wt ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
24 mapdh8c.ut ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
25 mapdh8c.vw ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
26 mapdh8c.e ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) )
27 mapdh8c.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) )
28 1 2 14 dvhlvec ( 𝜑𝑈 ∈ LVec )
29 18 eldifad ( 𝜑𝑋𝑉 )
30 19 eldifad ( 𝜑𝑌𝑉 )
31 22 eldifad ( 𝜑𝑤𝑉 )
32 3 6 28 29 30 31 27 lspindpi ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) )
33 32 simprd ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
34 20 eldifad ( 𝜑𝑇𝑉 )
35 3 5 6 28 18 30 34 24 26 lspexch ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) )
36 28 adantr ( ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑤 } ) ) → 𝑈 ∈ LVec )
37 19 adantr ( ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑤 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
38 29 adantr ( ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑤 } ) ) → 𝑋𝑉 )
39 31 adantr ( ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑤 } ) ) → 𝑤𝑉 )
40 25 adantr ( ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑤 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
41 simpr ( ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑤 } ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑤 } ) )
42 3 5 6 36 37 38 39 40 41 lspexch ( ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑤 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) )
43 27 42 mtand ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑤 } ) )
44 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 22 23 20 33 35 43 mapdh8b ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑤 , 𝐸 , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑇 ⟩ ) )