Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh8a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdh8a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdh8a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
mapdh8a.s |
⊢ − = ( -g ‘ 𝑈 ) |
5 |
|
mapdh8a.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
mapdh8a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
mapdh8a.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
mapdh8a.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
9 |
|
mapdh8a.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
10 |
|
mapdh8a.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
11 |
|
mapdh8a.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
mapdh8a.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
mapdh8a.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
14 |
|
mapdh8a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
mapdh8b.f |
⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) |
16 |
|
mapdh8b.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
17 |
|
mapdh8b.a |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑤 〉 ) = 𝐸 ) |
18 |
|
mapdh8b.x |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
19 |
|
mapdh8b.y |
⊢ ( 𝜑 → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
20 |
|
mapdh8b.yz |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
21 |
|
mapdh8b.xt |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
22 |
|
mapdh8b.vw |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
23 |
|
mapdh8b.e |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) |
24 |
|
mapdh8b.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) |
25 |
1 2 14
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
26 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
27 |
19
|
eldifad |
⊢ ( 𝜑 → 𝑤 ∈ 𝑉 ) |
28 |
21
|
eldifad |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
29 |
3 6 25 26 27 28 23 24
|
lspindp5 |
⊢ ( 𝜑 → ¬ 𝑇 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) |
30 |
|
prcom |
⊢ { 𝑤 , 𝑇 } = { 𝑇 , 𝑤 } |
31 |
30
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑤 , 𝑇 } ) = ( 𝑁 ‘ { 𝑇 , 𝑤 } ) |
32 |
31
|
eleq2i |
⊢ ( 𝑌 ∈ ( 𝑁 ‘ { 𝑤 , 𝑇 } ) ↔ 𝑌 ∈ ( 𝑁 ‘ { 𝑇 , 𝑤 } ) ) |
33 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑇 , 𝑤 } ) ) → 𝑈 ∈ LVec ) |
34 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑇 , 𝑤 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
35 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑇 , 𝑤 } ) ) → 𝑇 ∈ 𝑉 ) |
36 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑇 , 𝑤 } ) ) → 𝑤 ∈ 𝑉 ) |
37 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑇 , 𝑤 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑇 , 𝑤 } ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑇 , 𝑤 } ) ) |
39 |
3 5 6 33 34 35 36 37 38
|
lspexch |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑇 , 𝑤 } ) ) → 𝑇 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) |
40 |
39
|
ex |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑇 , 𝑤 } ) → 𝑇 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) ) |
41 |
32 40
|
syl5bi |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑤 , 𝑇 } ) → 𝑇 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) ) |
42 |
29 41
|
mtod |
⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑤 , 𝑇 } ) ) |
43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 42
|
mapdh8a |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑤 , 𝐸 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) ) |