Metamath Proof Explorer


Theorem mapdh8b

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 6-May-2015)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8b.f φGD
mapdh8b.mn φMNY=JG
mapdh8b.a φIYGw=E
mapdh8b.x φYV0˙
mapdh8b.y φwV0˙
mapdh8b.yz φNwNT
mapdh8b.xt φTV0˙
mapdh8b.vw φNYNw
mapdh8b.e φXNYT
mapdh8b.xn φ¬XNYw
Assertion mapdh8b φIwET=IYGT

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8b.f φGD
16 mapdh8b.mn φMNY=JG
17 mapdh8b.a φIYGw=E
18 mapdh8b.x φYV0˙
19 mapdh8b.y φwV0˙
20 mapdh8b.yz φNwNT
21 mapdh8b.xt φTV0˙
22 mapdh8b.vw φNYNw
23 mapdh8b.e φXNYT
24 mapdh8b.xn φ¬XNYw
25 1 2 14 dvhlvec φULVec
26 18 eldifad φYV
27 19 eldifad φwV
28 21 eldifad φTV
29 3 6 25 26 27 28 23 24 lspindp5 φ¬TNYw
30 prcom wT=Tw
31 30 fveq2i NwT=NTw
32 31 eleq2i YNwTYNTw
33 25 adantr φYNTwULVec
34 18 adantr φYNTwYV0˙
35 28 adantr φYNTwTV
36 27 adantr φYNTwwV
37 22 adantr φYNTwNYNw
38 simpr φYNTwYNTw
39 3 5 6 33 34 35 36 37 38 lspexch φYNTwTNYw
40 39 ex φYNTwTNYw
41 32 40 biimtrid φYNwTTNYw
42 29 41 mtod φ¬YNwT
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 42 mapdh8a φIwET=IYGT