Metamath Proof Explorer


Theorem mapdh8d

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 6-May-2015)

Ref Expression
Hypotheses mapdh8a.h H = LHyp K
mapdh8a.u U = DVecH K W
mapdh8a.v V = Base U
mapdh8a.s - ˙ = - U
mapdh8a.o 0 ˙ = 0 U
mapdh8a.n N = LSpan U
mapdh8a.c C = LCDual K W
mapdh8a.d D = Base C
mapdh8a.r R = - C
mapdh8a.q Q = 0 C
mapdh8a.j J = LSpan C
mapdh8a.m M = mapd K W
mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh8a.k φ K HL W H
mapdh8d.f φ F D
mapdh8d.mn φ M N X = J F
mapdh8b.eg φ I X F Y = G
mapdh8d.x φ X V 0 ˙
mapdh8d.y φ Y V 0 ˙
mapdh8d.xt φ T V 0 ˙
mapdh8d.yz φ N Y N T
mapdh8d.w φ w V 0 ˙
mapdh8d.wt φ N w N T
mapdh8d.ut φ N X N T
mapdh8d.vw φ N Y N w
mapdh8d.xn φ ¬ X N Y w
Assertion mapdh8d φ I Y G T = I X F T

Proof

Step Hyp Ref Expression
1 mapdh8a.h H = LHyp K
2 mapdh8a.u U = DVecH K W
3 mapdh8a.v V = Base U
4 mapdh8a.s - ˙ = - U
5 mapdh8a.o 0 ˙ = 0 U
6 mapdh8a.n N = LSpan U
7 mapdh8a.c C = LCDual K W
8 mapdh8a.d D = Base C
9 mapdh8a.r R = - C
10 mapdh8a.q Q = 0 C
11 mapdh8a.j J = LSpan C
12 mapdh8a.m M = mapd K W
13 mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
14 mapdh8a.k φ K HL W H
15 mapdh8d.f φ F D
16 mapdh8d.mn φ M N X = J F
17 mapdh8b.eg φ I X F Y = G
18 mapdh8d.x φ X V 0 ˙
19 mapdh8d.y φ Y V 0 ˙
20 mapdh8d.xt φ T V 0 ˙
21 mapdh8d.yz φ N Y N T
22 mapdh8d.w φ w V 0 ˙
23 mapdh8d.wt φ N w N T
24 mapdh8d.ut φ N X N T
25 mapdh8d.vw φ N Y N w
26 mapdh8d.xn φ ¬ X N Y w
27 14 adantr φ X N Y T K HL W H
28 19 eldifad φ Y V
29 1 2 14 dvhlvec φ U LVec
30 18 eldifad φ X V
31 22 eldifad φ w V
32 3 6 29 30 28 31 26 lspindpi φ N X N Y N X N w
33 32 simpld φ N X N Y
34 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 28 33 mapdhcl φ I X F Y D
35 17 34 eqeltrrd φ G D
36 35 adantr φ X N Y T G D
37 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 19 35 33 mapdheq φ I X F Y = G M N Y = J G M N X - ˙ Y = J F R G
38 17 37 mpbid φ M N Y = J G M N X - ˙ Y = J F R G
39 38 simpld φ M N Y = J G
40 39 adantr φ X N Y T M N Y = J G
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 25 22 26 mapdh8a φ I Y G w = I X F w
42 41 adantr φ X N Y T I Y G w = I X F w
43 19 adantr φ X N Y T Y V 0 ˙
44 22 adantr φ X N Y T w V 0 ˙
45 23 adantr φ X N Y T N w N T
46 20 adantr φ X N Y T T V 0 ˙
47 25 adantr φ X N Y T N Y N w
48 simpr φ X N Y T X N Y T
49 26 adantr φ X N Y T ¬ X N Y w
50 1 2 3 4 5 6 7 8 9 10 11 12 13 27 36 40 42 43 44 45 46 47 48 49 mapdh8b φ X N Y T I w I X F w T = I Y G T
51 15 adantr φ X N Y T F D
52 16 adantr φ X N Y T M N X = J F
53 eqidd φ X N Y T I X F w = I X F w
54 18 adantr φ X N Y T X V 0 ˙
55 21 adantr φ X N Y T N Y N T
56 24 adantr φ X N Y T N X N T
57 1 2 3 4 5 6 7 8 9 10 11 12 13 27 51 52 53 54 43 46 55 44 45 56 47 48 49 mapdh8c φ X N Y T I w I X F w T = I X F T
58 50 57 eqtr3d φ X N Y T I Y G T = I X F T
59 14 adantr φ ¬ X N Y T K HL W H
60 15 adantr φ ¬ X N Y T F D
61 16 adantr φ ¬ X N Y T M N X = J F
62 17 adantr φ ¬ X N Y T I X F Y = G
63 18 adantr φ ¬ X N Y T X V 0 ˙
64 19 adantr φ ¬ X N Y T Y V 0 ˙
65 21 adantr φ ¬ X N Y T N Y N T
66 20 adantr φ ¬ X N Y T T V 0 ˙
67 simpr φ ¬ X N Y T ¬ X N Y T
68 1 2 3 4 5 6 7 8 9 10 11 12 13 59 60 61 62 63 64 65 66 67 mapdh8a φ ¬ X N Y T I Y G T = I X F T
69 58 68 pm2.61dan φ I Y G T = I X F T