Metamath Proof Explorer


Theorem mapdh8d

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 6-May-2015)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8d.f φFD
mapdh8d.mn φMNX=JF
mapdh8b.eg φIXFY=G
mapdh8d.x φXV0˙
mapdh8d.y φYV0˙
mapdh8d.xt φTV0˙
mapdh8d.yz φNYNT
mapdh8d.w φwV0˙
mapdh8d.wt φNwNT
mapdh8d.ut φNXNT
mapdh8d.vw φNYNw
mapdh8d.xn φ¬XNYw
Assertion mapdh8d φIYGT=IXFT

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8d.f φFD
16 mapdh8d.mn φMNX=JF
17 mapdh8b.eg φIXFY=G
18 mapdh8d.x φXV0˙
19 mapdh8d.y φYV0˙
20 mapdh8d.xt φTV0˙
21 mapdh8d.yz φNYNT
22 mapdh8d.w φwV0˙
23 mapdh8d.wt φNwNT
24 mapdh8d.ut φNXNT
25 mapdh8d.vw φNYNw
26 mapdh8d.xn φ¬XNYw
27 14 adantr φXNYTKHLWH
28 19 eldifad φYV
29 1 2 14 dvhlvec φULVec
30 18 eldifad φXV
31 22 eldifad φwV
32 3 6 29 30 28 31 26 lspindpi φNXNYNXNw
33 32 simpld φNXNY
34 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 28 33 mapdhcl φIXFYD
35 17 34 eqeltrrd φGD
36 35 adantr φXNYTGD
37 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 19 35 33 mapdheq φIXFY=GMNY=JGMNX-˙Y=JFRG
38 17 37 mpbid φMNY=JGMNX-˙Y=JFRG
39 38 simpld φMNY=JG
40 39 adantr φXNYTMNY=JG
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 25 22 26 mapdh8a φIYGw=IXFw
42 41 adantr φXNYTIYGw=IXFw
43 19 adantr φXNYTYV0˙
44 22 adantr φXNYTwV0˙
45 23 adantr φXNYTNwNT
46 20 adantr φXNYTTV0˙
47 25 adantr φXNYTNYNw
48 simpr φXNYTXNYT
49 26 adantr φXNYT¬XNYw
50 1 2 3 4 5 6 7 8 9 10 11 12 13 27 36 40 42 43 44 45 46 47 48 49 mapdh8b φXNYTIwIXFwT=IYGT
51 15 adantr φXNYTFD
52 16 adantr φXNYTMNX=JF
53 eqidd φXNYTIXFw=IXFw
54 18 adantr φXNYTXV0˙
55 21 adantr φXNYTNYNT
56 24 adantr φXNYTNXNT
57 1 2 3 4 5 6 7 8 9 10 11 12 13 27 51 52 53 54 43 46 55 44 45 56 47 48 49 mapdh8c φXNYTIwIXFwT=IXFT
58 50 57 eqtr3d φXNYTIYGT=IXFT
59 14 adantr φ¬XNYTKHLWH
60 15 adantr φ¬XNYTFD
61 16 adantr φ¬XNYTMNX=JF
62 17 adantr φ¬XNYTIXFY=G
63 18 adantr φ¬XNYTXV0˙
64 19 adantr φ¬XNYTYV0˙
65 21 adantr φ¬XNYTNYNT
66 20 adantr φ¬XNYTTV0˙
67 simpr φ¬XNYT¬XNYT
68 1 2 3 4 5 6 7 8 9 10 11 12 13 59 60 61 62 63 64 65 66 67 mapdh8a φ¬XNYTIYGT=IXFT
69 58 68 pm2.61dan φIYGT=IXFT