Metamath Proof Explorer


Theorem mapdh8g

Description: Part of Part (8) in Baer p. 48. Eliminate X e. ( N{ Y , T } ) . TODO: break out T =/= .0. in mapdh8e so we can share hypotheses. Also, look at hypothesis sharing for earlier mapdh8* and mapdh75* stuff. (Contributed by NM, 10-May-2015)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8e.f φFD
mapdh8e.mn φMNX=JF
mapdh8e.eg φIXFY=G
mapdh8e.x φXV0˙
mapdh8e.y φYV0˙
mapdh8e.t φTV0˙
mapdh8e.xy φNXNY
mapdh8e.xt φNXNT
mapdh8e.yt φNYNT
Assertion mapdh8g φIYGT=IXFT

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8e.f φFD
16 mapdh8e.mn φMNX=JF
17 mapdh8e.eg φIXFY=G
18 mapdh8e.x φXV0˙
19 mapdh8e.y φYV0˙
20 mapdh8e.t φTV0˙
21 mapdh8e.xy φNXNY
22 mapdh8e.xt φNXNT
23 mapdh8e.yt φNYNT
24 14 adantr φXNYTKHLWH
25 15 adantr φXNYTFD
26 16 adantr φXNYTMNX=JF
27 17 adantr φXNYTIXFY=G
28 18 adantr φXNYTXV0˙
29 19 adantr φXNYTYV0˙
30 20 adantr φXNYTTV0˙
31 21 adantr φXNYTNXNY
32 22 adantr φXNYTNXNT
33 23 adantr φXNYTNYNT
34 simpr φXNYTXNYT
35 1 2 3 4 5 6 7 8 9 10 11 12 13 24 25 26 27 28 29 30 31 32 33 34 mapdh8e φXNYTIYGT=IXFT
36 14 adantr φ¬XNYTKHLWH
37 15 adantr φ¬XNYTFD
38 16 adantr φ¬XNYTMNX=JF
39 17 adantr φ¬XNYTIXFY=G
40 18 adantr φ¬XNYTXV0˙
41 19 adantr φ¬XNYTYV0˙
42 23 adantr φ¬XNYTNYNT
43 20 adantr φ¬XNYTTV0˙
44 simpr φ¬XNYT¬XNYT
45 1 2 3 4 5 6 7 8 9 10 11 12 13 36 37 38 39 40 41 42 43 44 mapdh8a φ¬XNYTIYGT=IXFT
46 35 45 pm2.61dan φIYGT=IXFT