| Step |
Hyp |
Ref |
Expression |
| 1 |
|
merco1lem2 |
|- ( ( ( ph -> ph ) -> F. ) -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> F. ) ) |
| 2 |
|
retbwax2 |
|- ( ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) -> ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) ) |
| 3 |
|
merco1lem2 |
|- ( ( ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) -> ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> F. ) -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> F. ) ) -> ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( ( ( ( ph -> ph ) -> F. ) -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> F. ) ) -> ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) ) |
| 5 |
1 4
|
ax-mp |
|- ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) |
| 6 |
|
merco1lem2 |
|- ( ( ( ch -> ph ) -> F. ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> F. ) ) |
| 7 |
|
retbwax2 |
|- ( ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) -> ( ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) ) ) |
| 8 |
|
merco1lem2 |
|- ( ( ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) -> ( ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) ) ) -> ( ( ( ( ch -> ph ) -> F. ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> F. ) ) -> ( ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) ) ) ) |
| 9 |
7 8
|
ax-mp |
|- ( ( ( ( ch -> ph ) -> F. ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> F. ) ) -> ( ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) ) ) |
| 10 |
6 9
|
ax-mp |
|- ( ( ph -> ( ( ( ph -> ph ) -> ( ph -> F. ) ) -> ( ph -> ph ) ) ) -> ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) ) |
| 11 |
5 10
|
ax-mp |
|- ( ( ( ph -> ps ) -> ( ch -> F. ) ) -> ( ch -> ph ) ) |