Metamath Proof Explorer


Theorem meteq0

Description: The value of a metric is zero iff its arguments are equal. Property M2 of Kreyszig p. 4. (Contributed by NM, 30-Aug-2006)

Ref Expression
Assertion meteq0
|- ( ( D e. ( Met ` X ) /\ A e. X /\ B e. X ) -> ( ( A D B ) = 0 <-> A = B ) )

Proof

Step Hyp Ref Expression
1 metxmet
 |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) )
2 xmeteq0
 |-  ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( ( A D B ) = 0 <-> A = B ) )
3 1 2 syl3an1
 |-  ( ( D e. ( Met ` X ) /\ A e. X /\ B e. X ) -> ( ( A D B ) = 0 <-> A = B ) )