| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resdmres |  |-  ( D |` dom ( D |` ( R X. R ) ) ) = ( D |` ( R X. R ) ) | 
						
							| 2 |  | ineq2 |  |-  ( dom D = ( X X. X ) -> ( ( R X. R ) i^i dom D ) = ( ( R X. R ) i^i ( X X. X ) ) ) | 
						
							| 3 |  | dmres |  |-  dom ( D |` ( R X. R ) ) = ( ( R X. R ) i^i dom D ) | 
						
							| 4 |  | inxp |  |-  ( ( X X. X ) i^i ( R X. R ) ) = ( ( X i^i R ) X. ( X i^i R ) ) | 
						
							| 5 |  | incom |  |-  ( ( X X. X ) i^i ( R X. R ) ) = ( ( R X. R ) i^i ( X X. X ) ) | 
						
							| 6 | 4 5 | eqtr3i |  |-  ( ( X i^i R ) X. ( X i^i R ) ) = ( ( R X. R ) i^i ( X X. X ) ) | 
						
							| 7 | 2 3 6 | 3eqtr4g |  |-  ( dom D = ( X X. X ) -> dom ( D |` ( R X. R ) ) = ( ( X i^i R ) X. ( X i^i R ) ) ) | 
						
							| 8 | 7 | reseq2d |  |-  ( dom D = ( X X. X ) -> ( D |` dom ( D |` ( R X. R ) ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) | 
						
							| 9 | 1 8 | eqtr3id |  |-  ( dom D = ( X X. X ) -> ( D |` ( R X. R ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) |