| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resdmres | ⊢ ( 𝐷  ↾  dom  ( 𝐷  ↾  ( 𝑅  ×  𝑅 ) ) )  =  ( 𝐷  ↾  ( 𝑅  ×  𝑅 ) ) | 
						
							| 2 |  | ineq2 | ⊢ ( dom  𝐷  =  ( 𝑋  ×  𝑋 )  →  ( ( 𝑅  ×  𝑅 )  ∩  dom  𝐷 )  =  ( ( 𝑅  ×  𝑅 )  ∩  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 3 |  | dmres | ⊢ dom  ( 𝐷  ↾  ( 𝑅  ×  𝑅 ) )  =  ( ( 𝑅  ×  𝑅 )  ∩  dom  𝐷 ) | 
						
							| 4 |  | inxp | ⊢ ( ( 𝑋  ×  𝑋 )  ∩  ( 𝑅  ×  𝑅 ) )  =  ( ( 𝑋  ∩  𝑅 )  ×  ( 𝑋  ∩  𝑅 ) ) | 
						
							| 5 |  | incom | ⊢ ( ( 𝑋  ×  𝑋 )  ∩  ( 𝑅  ×  𝑅 ) )  =  ( ( 𝑅  ×  𝑅 )  ∩  ( 𝑋  ×  𝑋 ) ) | 
						
							| 6 | 4 5 | eqtr3i | ⊢ ( ( 𝑋  ∩  𝑅 )  ×  ( 𝑋  ∩  𝑅 ) )  =  ( ( 𝑅  ×  𝑅 )  ∩  ( 𝑋  ×  𝑋 ) ) | 
						
							| 7 | 2 3 6 | 3eqtr4g | ⊢ ( dom  𝐷  =  ( 𝑋  ×  𝑋 )  →  dom  ( 𝐷  ↾  ( 𝑅  ×  𝑅 ) )  =  ( ( 𝑋  ∩  𝑅 )  ×  ( 𝑋  ∩  𝑅 ) ) ) | 
						
							| 8 | 7 | reseq2d | ⊢ ( dom  𝐷  =  ( 𝑋  ×  𝑋 )  →  ( 𝐷  ↾  dom  ( 𝐷  ↾  ( 𝑅  ×  𝑅 ) ) )  =  ( 𝐷  ↾  ( ( 𝑋  ∩  𝑅 )  ×  ( 𝑋  ∩  𝑅 ) ) ) ) | 
						
							| 9 | 1 8 | eqtr3id | ⊢ ( dom  𝐷  =  ( 𝑋  ×  𝑋 )  →  ( 𝐷  ↾  ( 𝑅  ×  𝑅 ) )  =  ( 𝐷  ↾  ( ( 𝑋  ∩  𝑅 )  ×  ( 𝑋  ∩  𝑅 ) ) ) ) |