Description: The lower adjoint F of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mgcoval.1 | |- A = ( Base ` V ) |
|
mgcoval.2 | |- B = ( Base ` W ) |
||
mgcoval.3 | |- .<_ = ( le ` V ) |
||
mgcoval.4 | |- .c_ = ( le ` W ) |
||
mgcval.1 | |- H = ( V MGalConn W ) |
||
mgcval.2 | |- ( ph -> V e. Proset ) |
||
mgcval.3 | |- ( ph -> W e. Proset ) |
||
mgccole.1 | |- ( ph -> F H G ) |
||
Assertion | mgcf1 | |- ( ph -> F : A --> B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgcoval.1 | |- A = ( Base ` V ) |
|
2 | mgcoval.2 | |- B = ( Base ` W ) |
|
3 | mgcoval.3 | |- .<_ = ( le ` V ) |
|
4 | mgcoval.4 | |- .c_ = ( le ` W ) |
|
5 | mgcval.1 | |- H = ( V MGalConn W ) |
|
6 | mgcval.2 | |- ( ph -> V e. Proset ) |
|
7 | mgcval.3 | |- ( ph -> W e. Proset ) |
|
8 | mgccole.1 | |- ( ph -> F H G ) |
|
9 | 1 2 3 4 5 6 7 | mgcval | |- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) |
10 | 8 9 | mpbid | |- ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) |
11 | 10 | simplld | |- ( ph -> F : A --> B ) |