Metamath Proof Explorer


Theorem mgcf1

Description: The lower adjoint F of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024)

Ref Expression
Hypotheses mgcoval.1 𝐴 = ( Base ‘ 𝑉 )
mgcoval.2 𝐵 = ( Base ‘ 𝑊 )
mgcoval.3 = ( le ‘ 𝑉 )
mgcoval.4 = ( le ‘ 𝑊 )
mgcval.1 𝐻 = ( 𝑉 MGalConn 𝑊 )
mgcval.2 ( 𝜑𝑉 ∈ Proset )
mgcval.3 ( 𝜑𝑊 ∈ Proset )
mgccole.1 ( 𝜑𝐹 𝐻 𝐺 )
Assertion mgcf1 ( 𝜑𝐹 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 mgcoval.1 𝐴 = ( Base ‘ 𝑉 )
2 mgcoval.2 𝐵 = ( Base ‘ 𝑊 )
3 mgcoval.3 = ( le ‘ 𝑉 )
4 mgcoval.4 = ( le ‘ 𝑊 )
5 mgcval.1 𝐻 = ( 𝑉 MGalConn 𝑊 )
6 mgcval.2 ( 𝜑𝑉 ∈ Proset )
7 mgcval.3 ( 𝜑𝑊 ∈ Proset )
8 mgccole.1 ( 𝜑𝐹 𝐻 𝐺 )
9 1 2 3 4 5 6 7 mgcval ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ∀ 𝑥𝐴𝑦𝐵 ( ( 𝐹𝑥 ) 𝑦𝑥 ( 𝐺𝑦 ) ) ) ) )
10 8 9 mpbid ( 𝜑 → ( ( 𝐹 : 𝐴𝐵𝐺 : 𝐵𝐴 ) ∧ ∀ 𝑥𝐴𝑦𝐵 ( ( 𝐹𝑥 ) 𝑦𝑥 ( 𝐺𝑦 ) ) ) )
11 10 simplld ( 𝜑𝐹 : 𝐴𝐵 )