Description: Monotone Galois connection between two functions F and G . If this relation is satisfied, F is called the lower adjoint of G , and G is called the upper adjoint of F .
Technically, this is implemented as an operation taking a pair of structures V and W , expected to be posets, which gives a relation between pairs of functions F and G .
If such a relation exists, it can be proven to be unique.
Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mgcoval.1 | ⊢ 𝐴 = ( Base ‘ 𝑉 ) | |
mgcoval.2 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
mgcoval.3 | ⊢ ≤ = ( le ‘ 𝑉 ) | ||
mgcoval.4 | ⊢ ≲ = ( le ‘ 𝑊 ) | ||
mgcval.1 | ⊢ 𝐻 = ( 𝑉 MGalConn 𝑊 ) | ||
mgcval.2 | ⊢ ( 𝜑 → 𝑉 ∈ Proset ) | ||
mgcval.3 | ⊢ ( 𝜑 → 𝑊 ∈ Proset ) | ||
Assertion | mgcval | ⊢ ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgcoval.1 | ⊢ 𝐴 = ( Base ‘ 𝑉 ) | |
2 | mgcoval.2 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
3 | mgcoval.3 | ⊢ ≤ = ( le ‘ 𝑉 ) | |
4 | mgcoval.4 | ⊢ ≲ = ( le ‘ 𝑊 ) | |
5 | mgcval.1 | ⊢ 𝐻 = ( 𝑉 MGalConn 𝑊 ) | |
6 | mgcval.2 | ⊢ ( 𝜑 → 𝑉 ∈ Proset ) | |
7 | mgcval.3 | ⊢ ( 𝜑 → 𝑊 ∈ Proset ) | |
8 | 1 2 3 4 | mgcoval | ⊢ ( ( 𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → ( 𝑉 MGalConn 𝑊 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝑔 ‘ 𝑦 ) ) ) } ) |
9 | 6 7 8 | syl2anc | ⊢ ( 𝜑 → ( 𝑉 MGalConn 𝑊 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝑔 ‘ 𝑦 ) ) ) } ) |
10 | 5 9 | syl5eq | ⊢ ( 𝜑 → 𝐻 = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝑔 ‘ 𝑦 ) ) ) } ) |
11 | 10 | breqd | ⊢ ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝑔 ‘ 𝑦 ) ) ) } 𝐺 ) ) |
12 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
13 | 12 | adantr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
14 | 13 | breq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ 𝑥 ) ≲ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ) ) |
15 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) | |
16 | 15 | adantl | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑔 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
17 | 16 | breq2d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 ≤ ( 𝑔 ‘ 𝑦 ) ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) |
18 | 14 17 | bibi12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑓 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝑔 ‘ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) |
19 | 18 | 2ralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝑔 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) |
20 | eqid | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝑔 ‘ 𝑦 ) ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝑔 ‘ 𝑦 ) ) ) } | |
21 | 19 20 | brab2a | ⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝑔 ‘ 𝑦 ) ) ) } 𝐺 ↔ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐴 ↑m 𝐵 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) |
22 | 2 | fvexi | ⊢ 𝐵 ∈ V |
23 | 1 | fvexi | ⊢ 𝐴 ∈ V |
24 | 22 23 | elmap | ⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
25 | 23 22 | elmap | ⊢ ( 𝐺 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐺 : 𝐵 ⟶ 𝐴 ) |
26 | 24 25 | anbi12i | ⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐴 ↑m 𝐵 ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ) |
27 | 26 | anbi1i | ⊢ ( ( ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐴 ↑m 𝐵 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) ↔ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) |
28 | 21 27 | bitr2i | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) ↔ 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝑔 ‘ 𝑦 ) ) ) } 𝐺 ) |
29 | 11 28 | bitr4di | ⊢ ( 𝜑 → ( 𝐹 𝐻 𝐺 ↔ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ≲ 𝑦 ↔ 𝑥 ≤ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |