Description: The minimum of two numbers is less than or equal to the second. (Contributed by Glauco Siliprandi, 5-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | min2d.1 | |- ( ph -> A e. RR ) |
|
| min2d.2 | |- ( ph -> B e. RR ) |
||
| Assertion | min2d | |- ( ph -> if ( A <_ B , A , B ) <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | min2d.1 | |- ( ph -> A e. RR ) |
|
| 2 | min2d.2 | |- ( ph -> B e. RR ) |
|
| 3 | min2 | |- ( ( A e. RR /\ B e. RR ) -> if ( A <_ B , A , B ) <_ B ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> if ( A <_ B , A , B ) <_ B ) |