Metamath Proof Explorer


Theorem mndlsmidm

Description: Subgroup sum is idempotent for monoids. This corresponds to the observation in Lang p. 6. (Contributed by AV, 27-Dec-2023)

Ref Expression
Hypotheses mndlsmidm.p
|- .(+) = ( LSSum ` G )
mndlsmidm.b
|- B = ( Base ` G )
Assertion mndlsmidm
|- ( G e. Mnd -> ( B .(+) B ) = B )

Proof

Step Hyp Ref Expression
1 mndlsmidm.p
 |-  .(+) = ( LSSum ` G )
2 mndlsmidm.b
 |-  B = ( Base ` G )
3 2 submid
 |-  ( G e. Mnd -> B e. ( SubMnd ` G ) )
4 1 smndlsmidm
 |-  ( B e. ( SubMnd ` G ) -> ( B .(+) B ) = B )
5 3 4 syl
 |-  ( G e. Mnd -> ( B .(+) B ) = B )