Description: Subgroup sum is idempotent for monoids. This corresponds to the observation in Lang p. 6. (Contributed by AV, 27-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndlsmidm.p | |- .(+) = ( LSSum ` G ) |
|
mndlsmidm.b | |- B = ( Base ` G ) |
||
Assertion | mndlsmidm | |- ( G e. Mnd -> ( B .(+) B ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndlsmidm.p | |- .(+) = ( LSSum ` G ) |
|
2 | mndlsmidm.b | |- B = ( Base ` G ) |
|
3 | 2 | submid | |- ( G e. Mnd -> B e. ( SubMnd ` G ) ) |
4 | 1 | smndlsmidm | |- ( B e. ( SubMnd ` G ) -> ( B .(+) B ) = B ) |
5 | 3 4 | syl | |- ( G e. Mnd -> ( B .(+) B ) = B ) |