Metamath Proof Explorer


Theorem moexex

Description: "At most one" double quantification. Usage of this theorem is discouraged because it depends on ax-13 . Use the version moexexvw when possible. (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 28-Dec-2018) Factor out common proof lines with moexexvw . (Revised by Wolf Lammen, 2-Oct-2023) (New usage is discouraged.)

Ref Expression
Hypothesis moexex.1
|- F/ y ph
Assertion moexex
|- ( ( E* x ph /\ A. x E* y ps ) -> E* y E. x ( ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 moexex.1
 |-  F/ y ph
2 1 nfmo
 |-  F/ y E* x ph
3 nfe1
 |-  F/ x E. x ( ph /\ ps )
4 3 nfmo
 |-  F/ x E* y E. x ( ph /\ ps )
5 1 2 4 moexexlem
 |-  ( ( E* x ph /\ A. x E* y ps ) -> E* y E. x ( ph /\ ps ) )