| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpl1.p |
|- P = ( I mPoly R ) |
| 2 |
|
mpl1.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 3 |
|
mpl1.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
mpl1.o |
|- .1. = ( 1r ` R ) |
| 5 |
|
mpl1.u |
|- U = ( 1r ` P ) |
| 6 |
|
mpl1.i |
|- ( ph -> I e. W ) |
| 7 |
|
mpl1.r |
|- ( ph -> R e. Ring ) |
| 8 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 9 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 10 |
8 1 9 6 7
|
mplsubrg |
|- ( ph -> ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) |
| 11 |
1 8 9
|
mplval2 |
|- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
| 12 |
|
eqid |
|- ( 1r ` ( I mPwSer R ) ) = ( 1r ` ( I mPwSer R ) ) |
| 13 |
11 12
|
subrg1 |
|- ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( 1r ` ( I mPwSer R ) ) = ( 1r ` P ) ) |
| 14 |
10 13
|
syl |
|- ( ph -> ( 1r ` ( I mPwSer R ) ) = ( 1r ` P ) ) |
| 15 |
8 6 7 2 3 4 12
|
psr1 |
|- ( ph -> ( 1r ` ( I mPwSer R ) ) = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) |
| 16 |
14 15
|
eqtr3d |
|- ( ph -> ( 1r ` P ) = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) |
| 17 |
5 16
|
eqtrid |
|- ( ph -> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) |