Metamath Proof Explorer


Theorem mpl1

Description: The identity element of the ring of polynomials. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mpl1.p P=ImPolyR
mpl1.d D=f0I|f-1Fin
mpl1.z 0˙=0R
mpl1.o 1˙=1R
mpl1.u U=1P
mpl1.i φIW
mpl1.r φRRing
Assertion mpl1 φU=xDifx=I×01˙0˙

Proof

Step Hyp Ref Expression
1 mpl1.p P=ImPolyR
2 mpl1.d D=f0I|f-1Fin
3 mpl1.z 0˙=0R
4 mpl1.o 1˙=1R
5 mpl1.u U=1P
6 mpl1.i φIW
7 mpl1.r φRRing
8 eqid ImPwSerR=ImPwSerR
9 eqid BaseP=BaseP
10 8 1 9 6 7 mplsubrg φBasePSubRingImPwSerR
11 1 8 9 mplval2 P=ImPwSerR𝑠BaseP
12 eqid 1ImPwSerR=1ImPwSerR
13 11 12 subrg1 BasePSubRingImPwSerR1ImPwSerR=1P
14 10 13 syl φ1ImPwSerR=1P
15 8 6 7 2 3 4 12 psr1 φ1ImPwSerR=xDifx=I×01˙0˙
16 14 15 eqtr3d φ1P=xDifx=I×01˙0˙
17 5 16 eqtrid φU=xDifx=I×01˙0˙