Metamath Proof Explorer


Theorem mplsca

Description: The scalar field of a multivariate polynomial structure. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplsca.p P=ImPolyR
mplsca.i φIV
mplsca.r φRW
Assertion mplsca φR=ScalarP

Proof

Step Hyp Ref Expression
1 mplsca.p P=ImPolyR
2 mplsca.i φIV
3 mplsca.r φRW
4 eqid ImPwSerR=ImPwSerR
5 4 2 3 psrsca φR=ScalarImPwSerR
6 fvex BasePV
7 eqid BaseP=BaseP
8 1 4 7 mplval2 P=ImPwSerR𝑠BaseP
9 eqid ScalarImPwSerR=ScalarImPwSerR
10 8 9 resssca BasePVScalarImPwSerR=ScalarP
11 6 10 ax-mp ScalarImPwSerR=ScalarP
12 5 11 eqtrdi φR=ScalarP