| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplcoe4.p |
|- P = ( I mPoly R ) |
| 2 |
|
mplcoe4.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 3 |
|
mplcoe4.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
mplcoe4.b |
|- B = ( Base ` P ) |
| 5 |
|
mplcoe4.i |
|- ( ph -> I e. W ) |
| 6 |
|
mplcoe4.r |
|- ( ph -> R e. Ring ) |
| 7 |
|
mplcoe4.x |
|- ( ph -> X e. B ) |
| 8 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 9 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 10 |
1 2 3 8 5 4 9 6 7
|
mplcoe1 |
|- ( ph -> X = ( P gsum ( k e. D |-> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) ) ) ) |
| 11 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ k e. D ) -> I e. W ) |
| 13 |
6
|
adantr |
|- ( ( ph /\ k e. D ) -> R e. Ring ) |
| 14 |
|
simpr |
|- ( ( ph /\ k e. D ) -> k e. D ) |
| 15 |
1 11 4 2 7
|
mplelf |
|- ( ph -> X : D --> ( Base ` R ) ) |
| 16 |
15
|
ffvelcdmda |
|- ( ( ph /\ k e. D ) -> ( X ` k ) e. ( Base ` R ) ) |
| 17 |
1 9 2 8 3 11 12 13 14 16
|
mplmon2 |
|- ( ( ph /\ k e. D ) -> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) = ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) |
| 18 |
17
|
mpteq2dva |
|- ( ph -> ( k e. D |-> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) ) = ( k e. D |-> ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) ) |
| 19 |
18
|
oveq2d |
|- ( ph -> ( P gsum ( k e. D |-> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) ) ) = ( P gsum ( k e. D |-> ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) ) ) |
| 20 |
10 19
|
eqtrd |
|- ( ph -> X = ( P gsum ( k e. D |-> ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) ) ) |