| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplmul.p |
|- P = ( I mPoly R ) |
| 2 |
|
mplmul.b |
|- B = ( Base ` P ) |
| 3 |
|
mplmul.m |
|- .x. = ( .r ` R ) |
| 4 |
|
mplmul.t |
|- .xb = ( .r ` P ) |
| 5 |
|
mplmul.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 6 |
|
mplmul.f |
|- ( ph -> F e. B ) |
| 7 |
|
mplmul.g |
|- ( ph -> G e. B ) |
| 8 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 9 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
| 10 |
1 8 4
|
mplmulr |
|- .xb = ( .r ` ( I mPwSer R ) ) |
| 11 |
1 8 2 9
|
mplbasss |
|- B C_ ( Base ` ( I mPwSer R ) ) |
| 12 |
11 6
|
sselid |
|- ( ph -> F e. ( Base ` ( I mPwSer R ) ) ) |
| 13 |
11 7
|
sselid |
|- ( ph -> G e. ( Base ` ( I mPwSer R ) ) ) |
| 14 |
8 9 3 10 5 12 13
|
psrmulfval |
|- ( ph -> ( F .xb G ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) ) |