Description: Obsolete version of mpteq1df as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpteq1df.1 | |- F/ x ph |
|
| mpteq1df.2 | |- ( ph -> A = B ) |
||
| Assertion | mpteq1dfOLD | |- ( ph -> ( x e. A |-> C ) = ( x e. B |-> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq1df.1 | |- F/ x ph |
|
| 2 | mpteq1df.2 | |- ( ph -> A = B ) |
|
| 3 | 1 2 | alrimi | |- ( ph -> A. x A = B ) |
| 4 | eqid | |- C = C |
|
| 5 | 4 | rgenw | |- A. x e. A C = C |
| 6 | mpteq12f | |- ( ( A. x A = B /\ A. x e. A C = C ) -> ( x e. A |-> C ) = ( x e. B |-> C ) ) |
|
| 7 | 3 5 6 | sylancl | |- ( ph -> ( x e. A |-> C ) = ( x e. B |-> C ) ) |