Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Functions
mpteq1dfOLD
Metamath Proof Explorer
Description: Obsolete version of mpteq1df as of 11-Nov-2024. (Contributed by Glauco Siliprandi , 23-Oct-2021) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
mpteq1df.1
⊢ Ⅎ 𝑥 𝜑
mpteq1df.2
⊢ ( 𝜑 → 𝐴 = 𝐵 )
Assertion
mpteq1dfOLD
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) )
Proof
Step
Hyp
Ref
Expression
1
mpteq1df.1
⊢ Ⅎ 𝑥 𝜑
2
mpteq1df.2
⊢ ( 𝜑 → 𝐴 = 𝐵 )
3
1 2
alrimi
⊢ ( 𝜑 → ∀ 𝑥 𝐴 = 𝐵 )
4
eqid
⊢ 𝐶 = 𝐶
5
4
rgenw
⊢ ∀ 𝑥 ∈ 𝐴 𝐶 = 𝐶
6
mpteq12f
⊢ ( ( ∀ 𝑥 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 = 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) )
7
3 5 6
sylancl
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) )