Metamath Proof Explorer


Theorem mpteq1dfOLD

Description: Obsolete version of mpteq1df as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mpteq1df.1 𝑥 𝜑
mpteq1df.2 ( 𝜑𝐴 = 𝐵 )
Assertion mpteq1dfOLD ( 𝜑 → ( 𝑥𝐴𝐶 ) = ( 𝑥𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 mpteq1df.1 𝑥 𝜑
2 mpteq1df.2 ( 𝜑𝐴 = 𝐵 )
3 1 2 alrimi ( 𝜑 → ∀ 𝑥 𝐴 = 𝐵 )
4 eqid 𝐶 = 𝐶
5 4 rgenw 𝑥𝐴 𝐶 = 𝐶
6 mpteq12f ( ( ∀ 𝑥 𝐴 = 𝐵 ∧ ∀ 𝑥𝐴 𝐶 = 𝐶 ) → ( 𝑥𝐴𝐶 ) = ( 𝑥𝐵𝐶 ) )
7 3 5 6 sylancl ( 𝜑 → ( 𝑥𝐴𝐶 ) = ( 𝑥𝐵𝐶 ) )