Metamath Proof Explorer


Theorem mptiniseg

Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypothesis dmmpt.1
|- F = ( x e. A |-> B )
Assertion mptiniseg
|- ( C e. V -> ( `' F " { C } ) = { x e. A | B = C } )

Proof

Step Hyp Ref Expression
1 dmmpt.1
 |-  F = ( x e. A |-> B )
2 1 mptpreima
 |-  ( `' F " { C } ) = { x e. A | B e. { C } }
3 elsn2g
 |-  ( C e. V -> ( B e. { C } <-> B = C ) )
4 3 rabbidv
 |-  ( C e. V -> { x e. A | B e. { C } } = { x e. A | B = C } )
5 2 4 eqtrid
 |-  ( C e. V -> ( `' F " { C } ) = { x e. A | B = C } )