Metamath Proof Explorer


Theorem mptsnun

Description: A class B is equal to the union of the class of all singletons of elements of B . (Contributed by ML, 16-Jul-2020)

Ref Expression
Hypotheses mptsnun.f
|- F = ( x e. A |-> { x } )
mptsnun.r
|- R = { u | E. x e. A u = { x } }
Assertion mptsnun
|- ( B C_ A -> B = U. ( F " B ) )

Proof

Step Hyp Ref Expression
1 mptsnun.f
 |-  F = ( x e. A |-> { x } )
2 mptsnun.r
 |-  R = { u | E. x e. A u = { x } }
3 sneq
 |-  ( x = y -> { x } = { y } )
4 3 cbvmptv
 |-  ( x e. A |-> { x } ) = ( y e. A |-> { y } )
5 4 eqcomi
 |-  ( y e. A |-> { y } ) = ( x e. A |-> { x } )
6 5 2 mptsnunlem
 |-  ( B C_ A -> B = U. ( ( y e. A |-> { y } ) " B ) )
7 1 4 eqtri
 |-  F = ( y e. A |-> { y } )
8 7 imaeq1i
 |-  ( F " B ) = ( ( y e. A |-> { y } ) " B )
9 8 unieqi
 |-  U. ( F " B ) = U. ( ( y e. A |-> { y } ) " B )
10 6 9 eqtr4di
 |-  ( B C_ A -> B = U. ( F " B ) )