Description: The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
| Assertion | mrcf | |- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
| 2 | mrcflem | |- ( C e. ( Moore ` X ) -> ( x e. ~P X |-> |^| { s e. C | x C_ s } ) : ~P X --> C ) |
|
| 3 | 1 | mrcfval | |- ( C e. ( Moore ` X ) -> F = ( x e. ~P X |-> |^| { s e. C | x C_ s } ) ) |
| 4 | 3 | feq1d | |- ( C e. ( Moore ` X ) -> ( F : ~P X --> C <-> ( x e. ~P X |-> |^| { s e. C | x C_ s } ) : ~P X --> C ) ) |
| 5 | 2 4 | mpbird | |- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |