Description: The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
Assertion | mrcf | |- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
2 | mrcflem | |- ( C e. ( Moore ` X ) -> ( x e. ~P X |-> |^| { s e. C | x C_ s } ) : ~P X --> C ) |
|
3 | 1 | mrcfval | |- ( C e. ( Moore ` X ) -> F = ( x e. ~P X |-> |^| { s e. C | x C_ s } ) ) |
4 | 3 | feq1d | |- ( C e. ( Moore ` X ) -> ( F : ~P X --> C <-> ( x e. ~P X |-> |^| { s e. C | x C_ s } ) : ~P X --> C ) ) |
5 | 2 4 | mpbird | |- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |