Metamath Proof Explorer


Theorem mrcf

Description: The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f
|- F = ( mrCls ` C )
Assertion mrcf
|- ( C e. ( Moore ` X ) -> F : ~P X --> C )

Proof

Step Hyp Ref Expression
1 mrcfval.f
 |-  F = ( mrCls ` C )
2 mrcflem
 |-  ( C e. ( Moore ` X ) -> ( x e. ~P X |-> |^| { s e. C | x C_ s } ) : ~P X --> C )
3 1 mrcfval
 |-  ( C e. ( Moore ` X ) -> F = ( x e. ~P X |-> |^| { s e. C | x C_ s } ) )
4 3 feq1d
 |-  ( C e. ( Moore ` X ) -> ( F : ~P X --> C <-> ( x e. ~P X |-> |^| { s e. C | x C_ s } ) : ~P X --> C ) )
5 2 4 mpbird
 |-  ( C e. ( Moore ` X ) -> F : ~P X --> C )