Metamath Proof Explorer


Theorem mrcf

Description: The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F=mrClsC
Assertion mrcf CMooreXF:𝒫XC

Proof

Step Hyp Ref Expression
1 mrcfval.f F=mrClsC
2 mrcflem CMooreXx𝒫XsC|xs:𝒫XC
3 1 mrcfval CMooreXF=x𝒫XsC|xs
4 3 feq1d CMooreXF:𝒫XCx𝒫XsC|xs:𝒫XC
5 2 4 mpbird CMooreXF:𝒫XC