Metamath Proof Explorer


Theorem mrcrsp

Description: Moore closure generalizes ideal span. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypotheses mrcrsp.u
|- U = ( LIdeal ` R )
mrcrsp.k
|- K = ( RSpan ` R )
mrcrsp.f
|- F = ( mrCls ` U )
Assertion mrcrsp
|- ( R e. Ring -> K = F )

Proof

Step Hyp Ref Expression
1 mrcrsp.u
 |-  U = ( LIdeal ` R )
2 mrcrsp.k
 |-  K = ( RSpan ` R )
3 mrcrsp.f
 |-  F = ( mrCls ` U )
4 rlmlmod
 |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod )
5 lidlval
 |-  ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) )
6 1 5 eqtri
 |-  U = ( LSubSp ` ( ringLMod ` R ) )
7 rspval
 |-  ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) )
8 2 7 eqtri
 |-  K = ( LSpan ` ( ringLMod ` R ) )
9 6 8 3 mrclsp
 |-  ( ( ringLMod ` R ) e. LMod -> K = F )
10 4 9 syl
 |-  ( R e. Ring -> K = F )