Metamath Proof Explorer


Theorem msf

Description: The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypotheses msf.x
|- X = ( Base ` M )
msf.d
|- D = ( ( dist ` M ) |` ( X X. X ) )
Assertion msf
|- ( M e. MetSp -> D : ( X X. X ) --> RR )

Proof

Step Hyp Ref Expression
1 msf.x
 |-  X = ( Base ` M )
2 msf.d
 |-  D = ( ( dist ` M ) |` ( X X. X ) )
3 1 2 msmet
 |-  ( M e. MetSp -> D e. ( Met ` X ) )
4 metf
 |-  ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR )
5 3 4 syl
 |-  ( M e. MetSp -> D : ( X X. X ) --> RR )