Description: The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | msf.x | |- X = ( Base ` M ) |
|
msf.d | |- D = ( ( dist ` M ) |` ( X X. X ) ) |
||
Assertion | msf | |- ( M e. MetSp -> D : ( X X. X ) --> RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msf.x | |- X = ( Base ` M ) |
|
2 | msf.d | |- D = ( ( dist ` M ) |` ( X X. X ) ) |
|
3 | 1 2 | msmet | |- ( M e. MetSp -> D e. ( Met ` X ) ) |
4 | metf | |- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
|
5 | 3 4 | syl | |- ( M e. MetSp -> D : ( X X. X ) --> RR ) |