Metamath Proof Explorer


Theorem msf

Description: The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypotheses msf.x 𝑋 = ( Base ‘ 𝑀 )
msf.d 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) )
Assertion msf ( 𝑀 ∈ MetSp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 msf.x 𝑋 = ( Base ‘ 𝑀 )
2 msf.d 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) )
3 1 2 msmet ( 𝑀 ∈ MetSp → 𝐷 ∈ ( Met ‘ 𝑋 ) )
4 metf ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ )
5 3 4 syl ( 𝑀 ∈ MetSp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ )