Database
BASIC TOPOLOGY
Metric spaces
Open sets of a metric space
msf
Metamath Proof Explorer
Theorem msf
Description: The distance function of a metric space is a function into the real
numbers. (Contributed by NM , 30-Aug-2006) (Revised by Mario Carneiro , 12-Nov-2013)
Ref
Expression
Hypotheses
msf.x
⊢ 𝑋 = ( Base ‘ 𝑀 )
msf.d
⊢ 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) )
Assertion
msf
⊢ ( 𝑀 ∈ MetSp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ )
Proof
Step
Hyp
Ref
Expression
1
msf.x
⊢ 𝑋 = ( Base ‘ 𝑀 )
2
msf.d
⊢ 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) )
3
1 2
msmet
⊢ ( 𝑀 ∈ MetSp → 𝐷 ∈ ( Met ‘ 𝑋 ) )
4
metf
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ )
5
3 4
syl
⊢ ( 𝑀 ∈ MetSp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ )