Metamath Proof Explorer


Theorem mulpipq

Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion mulpipq
|- ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( <. A , B >. .pQ <. C , D >. ) = <. ( A .N C ) , ( B .N D ) >. )

Proof

Step Hyp Ref Expression
1 opelxpi
 |-  ( ( A e. N. /\ B e. N. ) -> <. A , B >. e. ( N. X. N. ) )
2 opelxpi
 |-  ( ( C e. N. /\ D e. N. ) -> <. C , D >. e. ( N. X. N. ) )
3 mulpipq2
 |-  ( ( <. A , B >. e. ( N. X. N. ) /\ <. C , D >. e. ( N. X. N. ) ) -> ( <. A , B >. .pQ <. C , D >. ) = <. ( ( 1st ` <. A , B >. ) .N ( 1st ` <. C , D >. ) ) , ( ( 2nd ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) >. )
4 1 2 3 syl2an
 |-  ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( <. A , B >. .pQ <. C , D >. ) = <. ( ( 1st ` <. A , B >. ) .N ( 1st ` <. C , D >. ) ) , ( ( 2nd ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) >. )
5 op1stg
 |-  ( ( A e. N. /\ B e. N. ) -> ( 1st ` <. A , B >. ) = A )
6 op1stg
 |-  ( ( C e. N. /\ D e. N. ) -> ( 1st ` <. C , D >. ) = C )
7 5 6 oveqan12d
 |-  ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( ( 1st ` <. A , B >. ) .N ( 1st ` <. C , D >. ) ) = ( A .N C ) )
8 op2ndg
 |-  ( ( A e. N. /\ B e. N. ) -> ( 2nd ` <. A , B >. ) = B )
9 op2ndg
 |-  ( ( C e. N. /\ D e. N. ) -> ( 2nd ` <. C , D >. ) = D )
10 8 9 oveqan12d
 |-  ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( ( 2nd ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) = ( B .N D ) )
11 7 10 opeq12d
 |-  ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> <. ( ( 1st ` <. A , B >. ) .N ( 1st ` <. C , D >. ) ) , ( ( 2nd ` <. A , B >. ) .N ( 2nd ` <. C , D >. ) ) >. = <. ( A .N C ) , ( B .N D ) >. )
12 4 11 eqtrd
 |-  ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( <. A , B >. .pQ <. C , D >. ) = <. ( A .N C ) , ( B .N D ) >. )