Description: Associative law for surreal multiplication. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulsassd.1 | |- ( ph -> A e. No ) | |
| mulsassd.2 | |- ( ph -> B e. No ) | ||
| mulsassd.3 | |- ( ph -> C e. No ) | ||
| Assertion | mulsassd | |- ( ph -> ( ( A x.s B ) x.s C ) = ( A x.s ( B x.s C ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mulsassd.1 | |- ( ph -> A e. No ) | |
| 2 | mulsassd.2 | |- ( ph -> B e. No ) | |
| 3 | mulsassd.3 | |- ( ph -> C e. No ) | |
| 4 | mulsass | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A x.s B ) x.s C ) = ( A x.s ( B x.s C ) ) ) | |
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A x.s B ) x.s C ) = ( A x.s ( B x.s C ) ) ) |