Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. C -> A e. _V ) |
2 |
|
elex |
|- ( B e. D -> B e. _V ) |
3 |
|
fveq1 |
|- ( y = B -> ( y ` v ) = ( B ` v ) ) |
4 |
|
oveq12 |
|- ( ( x = A /\ ( y ` v ) = ( B ` v ) ) -> ( x x. ( y ` v ) ) = ( A x. ( B ` v ) ) ) |
5 |
3 4
|
sylan2 |
|- ( ( x = A /\ y = B ) -> ( x x. ( y ` v ) ) = ( A x. ( B ` v ) ) ) |
6 |
5
|
mpteq2dv |
|- ( ( x = A /\ y = B ) -> ( v e. RR |-> ( x x. ( y ` v ) ) ) = ( v e. RR |-> ( A x. ( B ` v ) ) ) ) |
7 |
|
df-mulv |
|- .v = ( x e. _V , y e. _V |-> ( v e. RR |-> ( x x. ( y ` v ) ) ) ) |
8 |
|
reex |
|- RR e. _V |
9 |
8
|
mptex |
|- ( v e. RR |-> ( A x. ( B ` v ) ) ) e. _V |
10 |
6 7 9
|
ovmpoa |
|- ( ( A e. _V /\ B e. _V ) -> ( A .v B ) = ( v e. RR |-> ( A x. ( B ` v ) ) ) ) |
11 |
1 2 10
|
syl2an |
|- ( ( A e. C /\ B e. D ) -> ( A .v B ) = ( v e. RR |-> ( A x. ( B ` v ) ) ) ) |