Metamath Proof Explorer


Theorem n0ssold

Description: The non-negative surreal integers are a subset of the old set of _om . (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Assertion n0ssold
|- NN0_s C_ ( _Old ` _om )

Proof

Step Hyp Ref Expression
1 n0sbday
 |-  ( n e. NN0_s -> ( bday ` n ) e. _om )
2 omelon
 |-  _om e. On
3 n0sno
 |-  ( n e. NN0_s -> n e. No )
4 oldbday
 |-  ( ( _om e. On /\ n e. No ) -> ( n e. ( _Old ` _om ) <-> ( bday ` n ) e. _om ) )
5 2 3 4 sylancr
 |-  ( n e. NN0_s -> ( n e. ( _Old ` _om ) <-> ( bday ` n ) e. _om ) )
6 1 5 mpbird
 |-  ( n e. NN0_s -> n e. ( _Old ` _om ) )
7 6 ssriv
 |-  NN0_s C_ ( _Old ` _om )