Description: Ordinal zero is the additive identity for natural addition. (Contributed by Scott Fenton, 20-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | naddlid | |- ( A e. On -> ( (/) +no A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon | |- (/) e. On |
|
| 2 | naddcom | |- ( ( A e. On /\ (/) e. On ) -> ( A +no (/) ) = ( (/) +no A ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. On -> ( A +no (/) ) = ( (/) +no A ) ) |
| 4 | naddrid | |- ( A e. On -> ( A +no (/) ) = A ) |
|
| 5 | 3 4 | eqtr3d | |- ( A e. On -> ( (/) +no A ) = A ) |