Metamath Proof Explorer


Theorem naecoms

Description: A commutation rule for distinct variable specifiers. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)

Ref Expression
Hypothesis naecoms.1
|- ( -. A. x x = y -> ph )
Assertion naecoms
|- ( -. A. y y = x -> ph )

Proof

Step Hyp Ref Expression
1 naecoms.1
 |-  ( -. A. x x = y -> ph )
2 aecom
 |-  ( A. x x = y <-> A. y y = x )
3 2 1 sylnbir
 |-  ( -. A. y y = x -> ph )