Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nanbii.1 | |- ( ph <-> ps ) |
|
Assertion | nanbi1i | |- ( ( ph -/\ ch ) <-> ( ps -/\ ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbii.1 | |- ( ph <-> ps ) |
|
2 | nanbi1 | |- ( ( ph <-> ps ) -> ( ( ph -/\ ch ) <-> ( ps -/\ ch ) ) ) |
|
3 | 1 2 | ax-mp | |- ( ( ph -/\ ch ) <-> ( ps -/\ ch ) ) |