Description: The number of neighbors of a vertex is the number of edges at the vertex in a simple graph. (Contributed by AV, 27-Dec-2020) (Proof shortened by AV, 5-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbusgrf1o.v | |- V = ( Vtx ` G ) |
|
| nbusgrf1o.e | |- E = ( Edg ` G ) |
||
| Assertion | nbedgusgr | |- ( ( G e. USGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) = ( # ` { e e. E | U e. e } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbusgrf1o.v | |- V = ( Vtx ` G ) |
|
| 2 | nbusgrf1o.e | |- E = ( Edg ` G ) |
|
| 3 | ovex | |- ( G NeighbVtx U ) e. _V |
|
| 4 | 1 2 | nbusgrf1o | |- ( ( G e. USGraph /\ U e. V ) -> E. f f : ( G NeighbVtx U ) -1-1-onto-> { e e. E | U e. e } ) |
| 5 | hasheqf1oi | |- ( ( G NeighbVtx U ) e. _V -> ( E. f f : ( G NeighbVtx U ) -1-1-onto-> { e e. E | U e. e } -> ( # ` ( G NeighbVtx U ) ) = ( # ` { e e. E | U e. e } ) ) ) |
|
| 6 | 3 4 5 | mpsyl | |- ( ( G e. USGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) = ( # ` { e e. E | U e. e } ) ) |