Description: Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| Assertion | negsubdid | |- ( ph -> -u ( A - B ) = ( -u A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | negsubdi | |- ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( -u A + B ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> -u ( A - B ) = ( -u A + B ) ) |