Metamath Proof Explorer


Theorem nelcon3d

Description: Contrapositive law deduction for negated membership. (Contributed by AV, 28-Jan-2020)

Ref Expression
Hypothesis nelcon3d.1
|- ( ph -> ( A e. B -> C e. D ) )
Assertion nelcon3d
|- ( ph -> ( C e/ D -> A e/ B ) )

Proof

Step Hyp Ref Expression
1 nelcon3d.1
 |-  ( ph -> ( A e. B -> C e. D ) )
2 1 con3d
 |-  ( ph -> ( -. C e. D -> -. A e. B ) )
3 df-nel
 |-  ( C e/ D <-> -. C e. D )
4 df-nel
 |-  ( A e/ B <-> -. A e. B )
5 2 3 4 3imtr4g
 |-  ( ph -> ( C e/ D -> A e/ B ) )