Metamath Proof Explorer


Theorem nexntru

Description: There does not exist a set such that T. is not true. (Contributed by Anthony Hart, 13-Sep-2011)

Ref Expression
Assertion nexntru
|- -. E. x -. T.

Proof

Step Hyp Ref Expression
1 tru
 |-  T.
2 1 notnoti
 |-  -. -. T.
3 2 nex
 |-  -. E. x -. T.