Metamath Proof Explorer


Theorem nf5r

Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021) (Proof shortened by Wolf Lammen, 23-Nov-2023)

Ref Expression
Assertion nf5r
|- ( F/ x ph -> ( ph -> A. x ph ) )

Proof

Step Hyp Ref Expression
1 19.8a
 |-  ( ph -> E. x ph )
2 id
 |-  ( F/ x ph -> F/ x ph )
3 2 nfrd
 |-  ( F/ x ph -> ( E. x ph -> A. x ph ) )
4 1 3 syl5
 |-  ( F/ x ph -> ( ph -> A. x ph ) )