Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nfof.1 | |- F/_ x R |
|
Assertion | nfofr | |- F/_ x oR R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfof.1 | |- F/_ x R |
|
2 | df-ofr | |- oR R = { <. u , v >. | A. w e. ( dom u i^i dom v ) ( u ` w ) R ( v ` w ) } |
|
3 | nfcv | |- F/_ x ( dom u i^i dom v ) |
|
4 | nfcv | |- F/_ x ( u ` w ) |
|
5 | nfcv | |- F/_ x ( v ` w ) |
|
6 | 4 1 5 | nfbr | |- F/ x ( u ` w ) R ( v ` w ) |
7 | 3 6 | nfralw | |- F/ x A. w e. ( dom u i^i dom v ) ( u ` w ) R ( v ` w ) |
8 | 7 | nfopab | |- F/_ x { <. u , v >. | A. w e. ( dom u i^i dom v ) ( u ` w ) R ( v ` w ) } |
9 | 2 8 | nfcxfr | |- F/_ x oR R |