Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfof.1 | |- F/_ x R | |
| Assertion | nfofr | |- F/_ x oR R | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfof.1 | |- F/_ x R | |
| 2 | df-ofr |  |-  oR R = { <. u , v >. | A. w e. ( dom u i^i dom v ) ( u ` w ) R ( v ` w ) } | |
| 3 | nfcv | |- F/_ x ( dom u i^i dom v ) | |
| 4 | nfcv | |- F/_ x ( u ` w ) | |
| 5 | nfcv | |- F/_ x ( v ` w ) | |
| 6 | 4 1 5 | nfbr | |- F/ x ( u ` w ) R ( v ` w ) | 
| 7 | 3 6 | nfralw | |- F/ x A. w e. ( dom u i^i dom v ) ( u ` w ) R ( v ` w ) | 
| 8 | 7 | nfopab |  |-  F/_ x { <. u , v >. | A. w e. ( dom u i^i dom v ) ( u ` w ) R ( v ` w ) } | 
| 9 | 2 8 | nfcxfr | |- F/_ x oR R |