Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfof.1 | ⊢ Ⅎ 𝑥 𝑅 | |
| Assertion | nfofr | ⊢ Ⅎ 𝑥 ∘r 𝑅 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfof.1 | ⊢ Ⅎ 𝑥 𝑅 | |
| 2 | df-ofr | ⊢ ∘r 𝑅 = { 〈 𝑢 , 𝑣 〉 ∣ ∀ 𝑤 ∈ ( dom 𝑢 ∩ dom 𝑣 ) ( 𝑢 ‘ 𝑤 ) 𝑅 ( 𝑣 ‘ 𝑤 ) } | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 ( dom 𝑢 ∩ dom 𝑣 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑢 ‘ 𝑤 ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑣 ‘ 𝑤 ) | |
| 6 | 4 1 5 | nfbr | ⊢ Ⅎ 𝑥 ( 𝑢 ‘ 𝑤 ) 𝑅 ( 𝑣 ‘ 𝑤 ) | 
| 7 | 3 6 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑤 ∈ ( dom 𝑢 ∩ dom 𝑣 ) ( 𝑢 ‘ 𝑤 ) 𝑅 ( 𝑣 ‘ 𝑤 ) | 
| 8 | 7 | nfopab | ⊢ Ⅎ 𝑥 { 〈 𝑢 , 𝑣 〉 ∣ ∀ 𝑤 ∈ ( dom 𝑢 ∩ dom 𝑣 ) ( 𝑢 ‘ 𝑤 ) 𝑅 ( 𝑣 ‘ 𝑤 ) } | 
| 9 | 2 8 | nfcxfr | ⊢ Ⅎ 𝑥 ∘r 𝑅 |