Metamath Proof Explorer


Theorem nfopdALT

Description: Deduction version of bound-variable hypothesis builder nfop . This shows how the deduction version of a not-free theorem such as nfop can be created from the corresponding not-free inference theorem. (Contributed by NM, 19-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nfopdALT.1
|- ( ph -> F/_ x A )
nfopdALT.2
|- ( ph -> F/_ x B )
Assertion nfopdALT
|- ( ph -> F/_ x <. A , B >. )

Proof

Step Hyp Ref Expression
1 nfopdALT.1
 |-  ( ph -> F/_ x A )
2 nfopdALT.2
 |-  ( ph -> F/_ x B )
3 abidnf
 |-  ( F/_ x A -> { z | A. x z e. A } = A )
4 3 adantr
 |-  ( ( F/_ x A /\ F/_ x B ) -> { z | A. x z e. A } = A )
5 abidnf
 |-  ( F/_ x B -> { z | A. x z e. B } = B )
6 5 adantl
 |-  ( ( F/_ x A /\ F/_ x B ) -> { z | A. x z e. B } = B )
7 4 6 opeq12d
 |-  ( ( F/_ x A /\ F/_ x B ) -> <. { z | A. x z e. A } , { z | A. x z e. B } >. = <. A , B >. )
8 nfaba1
 |-  F/_ x { z | A. x z e. A }
9 nfaba1
 |-  F/_ x { z | A. x z e. B }
10 8 9 nfop
 |-  F/_ x <. { z | A. x z e. A } , { z | A. x z e. B } >.
11 1 2 7 10 nfded2
 |-  ( ph -> F/_ x <. A , B >. )