Description: If x is not free in ph and ps , then it is not free in ( ph \/ ps ) . (Contributed by NM, 5-Aug-1993) (Revised by Mario Carneiro, 11-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nf.1 | |- F/ x ph |
|
nf.2 | |- F/ x ps |
||
Assertion | nfor | |- F/ x ( ph \/ ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf.1 | |- F/ x ph |
|
2 | nf.2 | |- F/ x ps |
|
3 | df-or | |- ( ( ph \/ ps ) <-> ( -. ph -> ps ) ) |
|
4 | 1 | nfn | |- F/ x -. ph |
5 | 4 2 | nfim | |- F/ x ( -. ph -> ps ) |
6 | 3 5 | nfxfr | |- F/ x ( ph \/ ps ) |