Metamath Proof Explorer


Theorem nfor

Description: If x is not free in ph and ps , then it is not free in ( ph \/ ps ) . (Contributed by NM, 5-Aug-1993) (Revised by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses nf.1
|- F/ x ph
nf.2
|- F/ x ps
Assertion nfor
|- F/ x ( ph \/ ps )

Proof

Step Hyp Ref Expression
1 nf.1
 |-  F/ x ph
2 nf.2
 |-  F/ x ps
3 df-or
 |-  ( ( ph \/ ps ) <-> ( -. ph -> ps ) )
4 1 nfn
 |-  F/ x -. ph
5 4 2 nfim
 |-  F/ x ( -. ph -> ps )
6 3 5 nfxfr
 |-  F/ x ( ph \/ ps )