Description: If x is not free in ph and ps , then it is not free in ( ph \/ ps ) . (Contributed by NM, 5-Aug-1993) (Revised by Mario Carneiro, 11-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nf.1 | |- F/ x ph | |
| nf.2 | |- F/ x ps | ||
| Assertion | nfor | |- F/ x ( ph \/ ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nf.1 | |- F/ x ph | |
| 2 | nf.2 | |- F/ x ps | |
| 3 | df-or | |- ( ( ph \/ ps ) <-> ( -. ph -> ps ) ) | |
| 4 | 1 | nfn | |- F/ x -. ph | 
| 5 | 4 2 | nfim | |- F/ x ( -. ph -> ps ) | 
| 6 | 3 5 | nfxfr | |- F/ x ( ph \/ ps ) |