Database  
				CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY  
				Predicate calculus with equality:  Tarski's system S2 (1 rule, 6 schemes)  
				Axiom scheme ax-4 (Quantified Implication)  
				nfor  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   If x  is not free in ph  and ps  , then it is not free in
       ( ph \/ ps )  .  (Contributed by NM , 5-Aug-1993)   (Revised by Mario
       Carneiro , 11-Aug-2016) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						nf.1  
						  ⊢   Ⅎ  x     φ          
					 
					
						 
						 
						nf.2  
						  ⊢   Ⅎ  x     ψ          
					 
				
					 
					Assertion 
					nfor  
					  ⊢   Ⅎ  x      φ   ∨   ψ             
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							nf.1  
							   ⊢   Ⅎ  x     φ          
						 
						
							2  
							
								
							 
							nf.2  
							   ⊢   Ⅎ  x     ψ          
						 
						
							3  
							
								
							 
							df-or  
							    ⊢    φ   ∨   ψ      ↔    ¬   φ     →   ψ           
						 
						
							4  
							
								1 
							 
							nfn  
							   ⊢   Ⅎ  x     ¬   φ            
						 
						
							5  
							
								4  2 
							 
							nfim  
							   ⊢   Ⅎ  x      ¬   φ     →   ψ             
						 
						
							6  
							
								3  5 
							 
							nfxfr  
							   ⊢   Ⅎ  x      φ   ∨   ψ