Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-4 (Quantified Implication)
nfor
Metamath Proof Explorer
Description: If x is not free in ph and ps , then it is not free in
( ph \/ ps ) . (Contributed by NM , 5-Aug-1993) (Revised by Mario
Carneiro , 11-Aug-2016)
Ref
Expression
Hypotheses
nf.1
⊢ Ⅎ x φ
nf.2
⊢ Ⅎ x ψ
Assertion
nfor
⊢ Ⅎ x φ ∨ ψ
Proof
Step
Hyp
Ref
Expression
1
nf.1
⊢ Ⅎ x φ
2
nf.2
⊢ Ⅎ x ψ
3
df-or
⊢ φ ∨ ψ ↔ ¬ φ → ψ
4
1
nfn
⊢ Ⅎ x ¬ φ
5
4 2
nfim
⊢ Ⅎ x ¬ φ → ψ
6
3 5
nfxfr
⊢ Ⅎ x φ ∨ ψ